首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils
【2h】

Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils

机译:土壤中非脱氮剂一氧化二氮还原酶基因多样性和丰度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Agricultural and industrial practices more than doubled the intrinsic rate of terrestrial N fixation over the past century with drastic consequences, including increased atmospheric nitrous oxide (N2O) concentrations. N2O is a potent greenhouse gas and contributor to ozone layer destruction, and its release from fixed N is almost entirely controlled by microbial activities. Mitigation of N2O emissions to the atmosphere has been attributed exclusively to denitrifiers possessing NosZ, the enzyme system catalyzing N2O to N2 reduction. We demonstrate that diverse microbial taxa possess divergent nos clusters with genes that are related yet evolutionarily distinct from the typical nos genes of denitirifers. nos clusters with atypical nosZ occur in Bacteria and Archaea that denitrify (44% of genomes), do not possess other denitrification genes (56%), or perform dissimilatory nitrate reduction to ammonium (DNRA; (31%). Experiments with the DNRA soil bacterium Anaeromyxobacter dehalogenans demonstrated that the atypical NosZ is an effective N2O reductase, and PCR-based surveys suggested that atypical nosZ are abundant in terrestrial environments. Bioinformatic analyses revealed that atypical nos clusters possess distinctive regulatory and functional components (e.g., Sec vs. Tat secretion pathway in typical nos), and that previous nosZ-targeted PCR primers do not capture the atypical nosZ diversity. Collectively, our results suggest that nondenitrifying populations with a broad range of metabolisms and habitats are potentially significant contributors to N2O consumption. Apparently, a large, previously unrecognized group of environmental nosZ has not been accounted for, and characterizing their contributions to N2O consumption will advance understanding of the ecological controls on N2O emissions and lead to refined greenhouse gas flux models.
机译:在过去的一个世纪中,农业和工业实践使陆地固氮的固有速率增加了一倍以上,带来了巨大的后果,包括大气中一氧化二氮(N2O)浓度增加。 N2O是一种强大的温室气体,是破坏臭氧层的重要因素,其从固定氮中的释放几乎完全由微生物活动控制。减少向大气中排放N2O的原因完全归因于具有NosZ的反硝化剂,该酶系统催化N2O还原为N2。我们证明,不同的微生物分类群具有不同的nos簇,这些簇具有相关的基因,但在进化上不同于denitirifer的典型nos基因。带有非典型nosZ的nos簇出现在细菌和古细菌中,它们反硝化(占基因组的44%),不具有其他反硝化基因(占56%)或将硝酸盐异化还原为铵盐(DNRA;占31%)。脱氧无氧厌氧细菌表明非典型NosZ是一种有效的N2O还原酶,基于PCR的调查表明非典型NosZ在陆地环境中含量很高。总的来说,我们的研究结果表明,具有广泛代谢和生境的非脱氮种群可能是N2O消耗的重要因素。 ,以前未被识别的环境noZ组未被考虑,并对其进行表征对N2O消费的任何贡献将增进对N2O排放的生态控制的理解,并导致完善的温室气体通量模型。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号