首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Proton-transfer and hydrogen-bond interactions determine fluorescence quantum yield and photochemical efficiency of bacteriophytochrome
【2h】

Proton-transfer and hydrogen-bond interactions determine fluorescence quantum yield and photochemical efficiency of bacteriophytochrome

机译:质子转移和氢键相互作用决定了细菌植物色素的荧光量子产率和光化学效率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Phytochromes are red-light photoreceptor proteins that regulate a variety of responses and cellular processes in plants, bacteria, and fungi. The phytochrome light activation mechanism involves isomerization around the C15═C16 double bond of an open-chain tetrapyrrole chromophore, resulting in a flip of its D-ring. In an important new development, bacteriophytochrome (Bph) has been engineered for use as a fluorescent marker in mammalian tissues. Here we report that an unusual Bph, RpBphP3 from Rhodopseudomonas palustris, denoted P3, is fluorescent. This Bph modulates synthesis of light-harvesting complex in combination with a second Bph exhibiting classical photochemistry, RpBphP2, denoted P2. We identify the factors that determine the fluorescence and isomerization quantum yields through the application of ultrafast spectroscopy to wild-type and mutants of P2 and P3. The excited-state lifetime of the biliverdin chromophore in P3 was significantly longer at 330–500 ps than in P2 and other classical phytochromes and accompanied by a significantly reduced isomerization quantum yield. H/D exchange reduces the rate of decay from the excited state of biliverdin by a factor of 1.4 and increases the isomerization quantum yield. Comparison of the properties of the P2 and P3 variants shows that the quantum yields of fluorescence and isomerization are determined by excited-state deprotonation of biliverdin at the pyrrole rings, in competition with hydrogen-bond rupture between the D-ring and the apoprotein. This work provides a basis for structure-based conversion of Bph into an efficient near-IR fluorescent marker.
机译:植物色素是红光感光蛋白,可调节植物,细菌和真菌中的各种响应和细胞过程。植物色素的光激活机制涉及到开环四吡咯发色团的C15═C16双键周围的异构化,导致其D环翻转。在一项重要的新发展中,细菌植物色素(Bph)已被设计用作哺乳动物组织中的荧光标记。在这里,我们报道了一个不寻常的Bph,Rhodopseudomonas palustris的RpBphP3,表示为P3,是荧光的。该Bph结合第二个Bph表现出经典的光化学RpBphP2(表示为P2),调节光捕获复合物的合成。我们通过将超快光谱技术应用于P2和P3的野生型和突变体,确定了确定荧光和异构化量子产率的因素。在P3中,biliverdin发色团在330-500 ps的激发态寿命显着长于P2和其他经典植物色素,并且伴随着异构化量子产率的显着降低。 H / D交换使Biliverdin从激发态的衰变速率降低了1.4倍,并提高了异构化量子产率。 P2和P3变体性质的比较表明,荧光和异构化的量子产率是由Biliverdin在吡咯环上的激发态去质子化决定的,与D环和脱辅基蛋白之间的氢键断裂竞争。这项工作为将Bph转化为有效的近红外荧光标记物提供了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号