首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >A zipper network model of the failure mechanics of extracellular matrices
【2h】

A zipper network model of the failure mechanics of extracellular matrices

机译:细胞外基质失效机理的拉链网络模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Mechanical failure of soft tissues is characteristic of life-threatening diseases, including capillary stress failure, pulmonary emphysema, and vessel wall aneurysms. Failure occurs when mechanical forces are sufficiently high to rupture the enzymatically weakened extracellular matrix (ECM). Elastin, an important structural ECM protein, is known to stretch beyond 200% strain before failing. However, ECM constructs and native vessel walls composed primarily of elastin and proteoglycans (PGs) have been found to fail at much lower strains. In this study, we hypothesized that PGs significantly contribute to tissue failure. To test this, we developed a zipper network model (ZNM), in which springs representing elastin are organized into long wavy fibers in a zipper-like formation and placed within a network of springs mimicking PGs. Elastin and PG springs possessed distinct mechanical and failure properties. Simulations using the ZNM showed that the failure of PGs alone reduces the global failure strain of the ECM well below that of elastin, and hence, digestion of elastin does not influence the failure strain. Network analysis suggested that whereas PGs drive the failure process and define the failure strain, elastin determines the peak and failure stresses. Predictions of the ZNM were experimentally confirmed by measuring the failure properties of engineered elastin-rich ECM constructs before and after digestion with trypsin, which cleaves the core protein of PGs without affecting elastin. This study reveals a role for PGs in the failure properties of engineered and native ECM with implications for the design of engineered tissues.
机译:软组织的机械衰竭是危及生命的疾病的特征,包括毛细血管应力衰竭,肺气肿和血管壁动脉瘤。当机械力足够高以破坏酶促弱化的细胞外基质(ECM)时,就会发生失效。弹性蛋白是一种重要的ECM结构蛋白,已知在断裂前会延伸超过200%的应变。然而,已经发现主要由弹性蛋白和蛋白聚糖(PG)组成的ECM构建体和天然血管壁在低得多的菌株下失效。在这项研究中,我们假设PG会明显导致组织衰竭。为了测试这一点,我们开发了一个拉链网络模型(ZNM),其中代表弹性蛋白的弹簧被组织成拉链状结构的长波浪状纤维,并置于模仿PG的弹簧网络中。弹性和PG弹簧具有独特的机械性能和破坏性能。使用ZNM进行的模拟表明,仅PGs的破坏会使ECM的整体破坏应变大大低于弹性蛋白,因此,弹性蛋白的消化不会影响破坏应变。网络分析表明,尽管PG驱动了失效过程并定义了失效应变,但是弹性蛋白确定了峰值应力和失效应力。通过测量工程化的富含弹性蛋白的ECM构建体在用胰蛋白酶消化之前和之后的失效特性,可以通过实验证实ZNM的预测,该酶可以裂解PGs的核心蛋白而不影响弹性蛋白。这项研究揭示了PGs在工程和天然ECM的失效特性中的作用,对工程组织的设计具有影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号