首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Mechanism of histone methylation catalyzed by protein lysine methyltransferase SET7/9 and origin of product specificity
【2h】

Mechanism of histone methylation catalyzed by protein lysine methyltransferase SET7/9 and origin of product specificity

机译:蛋白质赖氨酸甲基转移酶SET7 / 9催化组蛋白甲基化的机理及产物特异性的起源

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Methylation of certain lysine residues in the N-terminal tails of core histone proteins in nucleosome is of fundamental importance in the regulation of chromatin structure and gene expression. Such histone modification is catalyzed by protein lysine methyltransferases (PKMTs). PKMTs contain a conserved SET domain in almost all of the cases and may transfer one to three methyl groups from S-adenosyl-l-methionine (AdoMet) to the ε-amino group of the target lysine residue. Here, quantum mechanical/molecular mechanical molecular dynamics and free-energy simulations are performed on human PKMT SET7/9 and its mutants to understand two outstanding questions for the reaction catalyzed by PKMTs: the mechanism for deprotonation of positively charged methyl lysine (lysine) and origin of product specificity. The results of the simulations suggest that Tyr-335 (an absolute conserved residue in PKMTs) may play the role as the general base for the deprotonation after dissociation of AdoHcy (S-adenosyl-l-homocysteine) and before binding of AdoMet. It is shown that conformational changes could bring Y335 to the target methyl lysine (lysine) for proton abstraction. This mechanism provides an explanation why methyl transfers could be catalyzed by PKMTs processively. The free-energy profiles for methyl transfers are reported and analyzed for wild type and certain mutants (Y305F and Y335F) and the active-site interactions that are of importance for the enzyme's function are discussed. The results of the simulations provide important insights into the catalytic process and lead to a better understanding of experimental observations concerning the origin of product specificity for PKMTs.
机译:核小体中核心组蛋白N末端的某些赖氨酸残基的甲基化对染色质结构和基因表达的调控至关重要。蛋白质赖氨酸甲基转移酶(PKMT)可催化这种组蛋白修饰。在几乎所有情况下,PKMT都包含一个保守的SET结构域,并且可能会将1-3个甲基从S-腺苷-1-蛋氨酸(AdoMet)转移到目标赖氨酸残基的ε-氨基。在这里,对人类PKMT SET7 / 9及其突变体进行了量子力学/分子力学的分子动力学和自由能模拟,以了解PKMT催化的反应的两个突出问题:带正电的甲基赖氨酸(赖氨酸)的去质子化机理和产品特异性的起源。模拟结果表明,Tyr-335(PKMT中的绝对保守残基)可能在解离AdoHcy(S-腺苷-1-同型半胱氨酸)之后和结合AdoMet之前充当去质子化的一般基础。结果表明,构象变化可以将Y335带到目标甲基赖氨酸(赖氨酸)以进行质子提取。该机制解释了为什么PKMT可以催化甲基转移。报告并分析了野生型和某些突变体(Y305F和Y335F)的甲基转移自由能谱,并讨论了对酶功能重要的活性位点相互作用。模拟的结果提供了对催化过程的重要见解,并导致对关于PKMT的产物特异性起源的实验观察结果有了更好的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号