【2h】

Ductile crystalline–amorphous nanolaminates

机译:延性晶体-无定形纳米层压板

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is known that the room-temperature plastic deformation of bulk metallic glasses is compromised by strain softening and shear localization, resulting in near-zero tensile ductility. The incorporation of metallic glasses into engineering materials, therefore, is often accompanied by complete brittleness or an apparent loss of useful tensile ductility. Here we report the observation of an exceptional tensile ductility in crystalline copper/copper–zirconium glass nanolaminates. These nanocrystalline–amorphous nanolaminates exhibit a high flow stress of 1.09 ± 0.02 GPa, a nearly elastic-perfectly plastic behavior without necking, and a tensile elongation to failure of 13.8 ± 1.7%, which is six to eight times higher than that typically observed in conventional crystalline–crystalline nanolaminates (<2%) and most other nanocrystalline materials. Transmission electron microscopy and atomistic simulations demonstrate that shear banding instability no longer afflicts the 5- to 10-nm-thick nanolaminate glassy layers during tensile deformation, which also act as high-capacity sinks for dislocations, enabling absorption of free volume and free energy transported by the dislocations; the amorphous–crystal interfaces exhibit unique inelastic shear (slip) transfer characteristics, fundamentally different from those of grain boundaries. Nanoscale metallic glass layers therefore may offer great benefits in engineering the plasticity of crystalline materials and opening new avenues for improving their strength and ductility.
机译:众所周知,块状金属玻璃的室温塑性变形会因应变软化和剪切局部化而受损,从而导致拉伸延展性接近于零。因此,将金属玻璃结合到工程材料中通常伴随着完全的脆性或有用的拉伸延展性的明显损失。在这里,我们报告了结晶铜/铜-锆玻璃纳米层压板具有出色的拉伸延展性的观察结果。这些纳米晶体-无定形纳米层压板表现出1.09±0.02 GPa的高流动应力,几乎没有弹性的完美塑性行为,没有颈缩,并且断裂拉伸伸长率为13.8±1.7%,比通常观察到的高六到八倍。传统的晶体-晶体纳米层压板(<2%)和大多数其他纳米晶体材料。透射电子显微镜和原子模拟表明,在拉伸变形过程中,剪切带的不稳定性不再影响5至10nm厚的纳米层状玻璃层,它们还充当位错的大容量吸收体,从而能够吸收自由体积和自由能由于错位;非晶-晶体界面表现出独特的非弹性剪切(滑移)传递特征,与晶界的根本不同。因此,纳米级金属玻璃层在工程化晶体材料的可塑性以及为提高其强度和延展性开辟新途径方面可能提供巨大的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号