首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Interlaced x-ray microplanar beams: A radiosurgery approach with clinical potential
【2h】

Interlaced x-ray microplanar beams: A radiosurgery approach with clinical potential

机译:交错X射线微平面束:具有临床潜力的放射外科方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Studies have shown that x-rays delivered as arrays of parallel microplanar beams (microbeams), 25- to 90-μm thick and spaced 100–300 μm on-center, respectively, spare normal tissues including the central nervous system (CNS) and preferentially damage tumors. However, such thin microbeams can only be produced by synchrotron sources and have other practical limitations to clinical implementation. To approach this problem, we first studied CNS tolerance to much thicker beams. Three of four rats whose spinal cords were exposed transaxially to four 400-Gy, 0.68-mm microbeams, spaced 4 mm, and all four rats irradiated to their brains with large, 170-Gy arrays of such beams spaced 1.36 mm, all observed for 7 months, showed no paralysis or behavioral changes. We then used an interlacing geometry in which two such arrays at a 90° angle produced the equivalent of a contiguous beam in the target volume only. By using this approach, we produced 90-, 120-, and 150-Gy 3.4 × 3.4 × 3.4 mm3 exposures in the rat brain. MRIs performed 6 months later revealed focal damage within the target volume at the 120- and 150-Gy doses but no apparent damage elsewhere at 120 Gy. Monte Carlo calculations indicated a 30-μm dose falloff (80–20%) at the edge of the target, which is much less than the 2- to 5-mm value for conventional radiotherapy and radiosurgery. These findings strongly suggest potential application of interlaced microbeams to treat tumors or to ablate nontumorous abnormalities with minimal damage to surrounding normal tissue.
机译:研究表明,X射线分别以平行微平面光束(微束)阵列的形式提供,中心厚度为25至90μm,中心间隔为100至300μm,包括正常的组织,包括中枢神经系统(CNS),优先破坏肿瘤。然而,这种细微束只能由同步加速器源产生,并且对临床实施具有其他实际限制。为了解决这个问题,我们首先研究了CNS对厚得多的光束的耐受性。四只大鼠中有三只的脊髓经轴向暴露于四根间隔400 mm的400-Gy,0.68 mm的微束中,四只大鼠的大脑均以170-Gy的大型间隔1.36 mm的光束照射到大脑,观察到7个月,未见瘫痪或行为改变。然后,我们使用了隔行几何结构,其中两个90°角的此类阵列仅在目标体积中产生了等效的连续光束。通过这种方法,我们在大鼠大脑中产生了90Gy,120Gy和150Gy 3.4×3.4×3.4 mm 3 曝光。 6个月后进行的MRI显示,在120Gy和150Gy剂量下,目标体积内有局灶性损害,而在120Gy处其他部位无明显损害。蒙特卡洛(Monte Carlo)的计算表明,靶标边缘出现30μm的剂量下降(80–20%),远小于传统放射疗法和放射外科手术的2至5mm值。这些发现强烈暗示了交织微束在治疗肿瘤或消融非肿瘤异常方面的潜在应用,而对周围正常组织的损害最小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号