首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >A model of long-term memory storage in the cerebellar cortex: A possible role for plasticity at parallel fiber synapses onto stellate/basket interneurons
【2h】

A model of long-term memory storage in the cerebellar cortex: A possible role for plasticity at parallel fiber synapses onto stellate/basket interneurons

机译:小脑皮层中长期记忆的模型:平行纤维突触在星状/篮状神经元上的可塑性的可能作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

By evoking changes in climbing fiber activity, movement errors are thought to modify synapses from parallel fibers onto Purkinje cells (pf*Pkj) so as to improve subsequent motor performance. Theoretical arguments suggest there is an intrinsic tradeoff, however, between motor adaptation and long-term storage. Assuming a baseline rate of motor errors is always present, then repeated performance of any learned movement will generate a series of climbing fiber-mediated corrections. By reshuffling the synaptic weights responsible for any given movement, such corrections will degrade the memories for other learned movements stored in overlapping sets of synapses. The present paper shows that long-term storage can be accomplished by a second site of plasticity at synapses from parallel fibers onto stellate/basket interneurons (pf*St/Bk). Plasticity at pf*St/Bk synapses can be insulated from ongoing fluctuations in climbing fiber activity by assuming that changes in pf*St/Bk synapses occur only after changes in pf*Pkj synapses have built up to a threshold level. Although climbing fiber-dependent plasticity at pf*Pkj synapses allows for the exploration of novel motor strategies in response to changing environmental conditions, plasticity at pf*St/Bk synapses transfers successful strategies to stable long-term storage. To quantify this hypothesis, both sites of plasticity are incorporated into a dynamical model of the cerebellar cortex and its interactions with the inferior olive. When used to simulate idealized motor conditioning trials, the model predicts that plasticity develops first at pf*Pkj synapses, but with additional training is transferred to pf*St/Bk synapses for long-term storage.
机译:通过引起攀岩纤维活动的变化,运动误差被认为是将平行纤维的突触修饰到浦肯野细胞(pf * Pkj)上,从而改善随后的运动表现。理论上的争论表明,在电机适应性和长期存储之间存在着内在的权衡。假设始终存在基线的运动错误率,那么任何学习到的运动的重复执行都会产生一系列攀爬纤维介导的校正。通过改组负责任何给定运动的突触权重,这样的校正将降低存储在重叠的突触集中的其他学习运动的记忆。本论文表明,可以通过平行纤维到星状/篮状中间神经元(pf * St / Bk)的突触上的第二个可塑性位置来实现长期存储。通过假设pf * St / Bk突触的变化仅在pf * Pkj突触的变化建立到阈值水平之后才发生,可以使pf * St / Bk突触的可塑性与持续的攀岩纤维活动波动隔离。尽管在pf * Pkj突触处攀爬依赖于纤维的可塑性允许探索新的运动策略以响应不断变化的环境条件,但在pf * St / Bk突触处的可塑性会成功地将策略​​转移到稳定的长期存储中。为了量化该假设,将可塑性的两个位点都合并到小脑皮层及其与下橄榄的相互作用的动力学模型中。当用于模拟理想的运动调节试验时,该模型预测可塑性首先在pf * Pkj突触处发展,但随着额外的训练被转移到pf * St / Bk突触进行长期存储。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号