首页> 美国卫生研究院文献>Polymers >Interfacial Hydrogen Bonds and Their Influence Mechanism on Increasing the Thermal Stability of Nano-SiO2-Modified Meta-Aramid Fibres
【2h】

Interfacial Hydrogen Bonds and Their Influence Mechanism on Increasing the Thermal Stability of Nano-SiO2-Modified Meta-Aramid Fibres

机译:界面氢键及其对提高纳米SiO 2改性间位芳纶纤维热稳定性的影响机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For further analysis of the effect of nano-doping on the properties of high polymers and research into the mechanism behind modified interfacial hydrogen bonds, a study on the formation probability of nano-SiO2/meta-aramid fibre interfacial hydrogen bonds and the strengthening mechanism behind interfacial hydrogen bonds on the thermal stability of meta-aramid fibres using molecular dynamics is performed in this paper. First, the pure meta-aramid fibre and nano-SiO2/meta-aramid fibre mixed models with nanoparticle radiuses of 3, 5, 7 and 9 Å (1 Å = 10−1 nm) are built, and then the optimization process and dynamics simulation of the models are conducted. The dynamics simulation results indicate that the number of hydrogen bonds increase due to the doping by nano-SiO2 and that the number of interfacial hydrogen bonds increases with the nanoparticle radius. By analysing the hydrogen bond formation probability of all the atom pairs in the mixed model with pair correlation functions (PCFs), it can be observed that the hydrogen bond formation probability between the oxygen atom and hydrogen atom on the nanoparticle surface is the greatest. An effective way to increase the number of interfacial hydrogen bonds in nano-SiO2 and meta-aramid fibres is to increase the number of hydrogen atoms on the nano-silica surface and oxygen atoms in the meta-aramid fibre. By using the radial distribution function (RDF), the conclusion can be further drawn that the hydrogen bond formation probability is at a maximum when the atomic distance is 2.7–2.8 Å; therefore, increasing the number of atoms within this range can significantly increase the formation probability of hydrogen bonds. According to the results of chain movement, the existence of interfacial hydrogen bonds effectively limits the free movement of the molecular chains of meta-aramid fibres and enhances the thermal stability of meta-aramid fibres. The existence of interfacial hydrogen bonds is one of the important reasons for formation of the stable interface structure between nanoparticles and meta-aramid fibres. In addition, a nanoparticle with a small radius improves the interfacial hydrogen bond energy density and interfacial interaction energy density, enhancing the stability of the mixed model interface.
机译:为了进一步分析纳米掺杂对高聚物性能的影响,并研究修饰的界面氢键的形成机理,研究了纳米SiO 2 /间位芳族聚酰胺纤维界面氢键的形成可能性及其背后的强化机理。本文利用分子动力学进行了界面间氢键对间位芳纶纤维热稳定性的影响。首先,建立具有3、5、7和9Å(1Å= 10 −1 nm)纳米粒子半径的纯间位芳族聚酰胺纤维和纳米SiO2 /间位芳族聚酰胺纤维混合模型,然后进行了模型的优化过程和动力学仿真。动力学仿真结果表明,由于纳米SiO 2的掺杂,氢键的数量增加,并且界面氢键的数量随纳米粒子半径的增加而增加。通过使用对相关函数(PCF)分析混合模型中所有原子对的氢键形成概率,可以观察到纳米粒子表面上的氧原子与氢原子之间的氢键形成概率最大。增加纳米SiO 2和间位芳族聚酰胺纤维中的界面氢键数量的有效方法是增加纳米二氧化硅表面上的氢原子数和间位芳族聚酰胺纤维中的氧原子数。通过使用径向分布函数(RDF),可以进一步得出结论,当原子距离为2.7-2.8Å时,氢键形成的可能性最大。因此,增加该范围内的原子数可显着增加氢键的形成概率。根据链运动的结果,界面氢键的存在有效地限制了间位芳族聚酰胺纤维分子链的自由运动,并增强了间位芳族聚酰胺纤维的热稳定性。界面氢键的存在是在纳米颗粒和间位芳族聚酰胺纤维之间形成稳定界面结构的重要原因之一。另外,具有小半径的纳米粒子改善了界面氢键能量密度和界面相互作用能密度,从而增强了混合模型界面的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号