首页> 美国卫生研究院文献>PLoS Pathogens >PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis
【2h】

PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis

机译:含PolyGlcNAc的外聚合物能够使非活动性粪肠球菌穿透表面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bacterial pathogens have evolved strategies that enable them to invade tissues and spread within the host. Enterococcus faecalis is a leading cause of local and disseminated multidrug-resistant hospital infections, but the molecular mechanisms used by this non-motile bacterium to penetrate surfaces and translocate through tissues remain largely unexplored. Here we present experimental evidence indicating that E. faecalis generates exopolysaccharides containing β-1,6-linked poly-N-acetylglucosamine (polyGlcNAc) as a mechanism to successfully penetrate semisolid surfaces and translocate through human epithelial cell monolayers. Genetic screening and molecular analyses of mutant strains identified glnA, rpiA and epaX as genes critically required for optimal E. faecalis penetration and translocation. Mechanistically, GlnA and RpiA cooperated to generate uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) that was utilized by EpaX to synthesize polyGlcNAc-containing polymers. Notably, exogenous supplementation with polymeric N-acetylglucosamine (PNAG) restored surface penetration by E. faecalis mutants devoid of EpaX. Our study uncovers an unexpected mechanism whereby the RpiA-GlnA-EpaX metabolic axis enables production of polyGlcNAc-containing polysaccharides that endow E. faecalis with the ability to penetrate surfaces. Hence, targeting carbohydrate metabolism or inhibiting biosynthesis of polyGlcNAc-containing exopolymers may represent a new strategy to more effectively confront enterococcal infections in the clinic.
机译:细菌病原体已经进化出使它们能够侵入组织并在宿主内传播的策略。粪肠球菌是引起局部和散布的多药耐药性医院感染的主要原因,但这种非运动性细菌用于穿透表面并通过组织移位的分子机制仍未开发。在这里,我们提供的实验证据表明,粪肠球菌产生了含有β-1,6-连接的聚N-乙酰氨基葡萄糖(polyGlcNAc)的胞外多糖,作为成功穿透半固体表面并通过人上皮细胞单层转运的机制。突变菌株的遗传筛选和分子分析确定了glnA,rpiA和epaX是最佳粪肠球菌穿透和易位的关键基因。从机理上讲,GlnA和RpiA协同产生了尿苷二磷酸N-乙酰氨基葡糖(UDP-GlcNAc),EpaX将其用于合成含聚GlcNAc的聚合物。值得注意的是,外源补充聚合N-乙酰氨基葡萄糖(PNAG)恢复了无EpaX的粪肠球菌突变体的表面渗透。我们的研究发现了RpiA-GlnA-EpaX代谢轴能够产生意想不到的机制,该机制可产生含聚GlcNAc的多糖,从而使粪肠球菌具有穿透表面的能力。因此,靶向碳水化合物代谢或抑制含polyGlcNAc的外聚合物的生物合成可能代表了一种新的策略,可以在临床上更有效地应对肠球菌感染。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号