首页> 美国卫生研究院文献>PLoS Genetics >Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control
【2h】

Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control

机译:基于杀虫剂的矢量控制的规模化驱动了非洲疟疾载体中对拟除虫菊酯的代谢抗性选择性扫描的基因组足迹

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the ‘resistance curve’ and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.
机译:蚊子种群对杀虫剂的抵抗力威胁着最近在疟疾预防方面的成功。阐明疟疾媒介的遗传结构模式,以预测抗药性传播的速度和方向,对于超越“抗药性曲线”并避免公共卫生灾难至关重要。在这里,通过结合微卫星分析,全基因组测序和抗性基因座的靶向测序,我们阐明了非洲主要疟疾媒介按蚊的整个大陆结构。我们在控制细胞色素P450的新陈代谢抗性的基因组区域中发现了主要的选择性扫描,从而赋予了对拟除虫菊酯的高抗性。自2002年以来就进行了这种选择性扫描,这可能是由于干预前和干预后人群的全基因组和精细测序所揭示的扩大的载体控制的直接结果。拟除虫菊酯抗药性位点的精细分析显示,与细胞色素P450单加氧酶CYP6P9a的抗药性相关等位基因已席卷南部非洲,几乎固定,与干预前的高多态性水平相比,赋予了与控制失败相关的高拟除虫菊酯抗性。人口结构分析表明,南部非洲与其他地区之间的基因交流受到阻碍,这可能阻止或减缓了拟除虫菊酯抗性的南方机制向其他地区的传播。通过确定基于拟除虫菊酯的干预措施的遗传特征,我们证明了控制干预措施对蚊子种群施加的强烈选择性压力。如果这种选择和耐药性扩散水平继续保持下去,那么我们用当前干预措施控制疟疾的能力将受到损害。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号