首页> 美国卫生研究院文献>PLoS Genetics >Rates of Gyrase Supercoiling and Transcription Elongation Control Supercoil Density in a Bacterial Chromosome
【2h】

Rates of Gyrase Supercoiling and Transcription Elongation Control Supercoil Density in a Bacterial Chromosome

机译:细菌染色体中的促旋酶超螺旋和转录延伸控制超螺旋密度的速率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gyrase catalyzes negative supercoiling of DNA in an ATP-dependent reaction that helps condense bacterial chromosomes into a compact interwound “nucleoid.” The supercoil density (σ) of prokaryotic DNA occurs in two forms. Diffusible supercoil density (σD) moves freely around the chromosome in 10 kb domains, and constrained supercoil density (σC) results from binding abundant proteins that bend, loop, or unwind DNA at many sites. Diffusible and constrained supercoils contribute roughly equally to the total in vivo negative supercoil density of WT cells, so σ = σC+σD. Unexpectedly, Escherichia coli chromosomes have a 15% higher level of σ compared to Salmonella enterica. To decipher critical mechanisms that can change diffusible supercoil density of chromosomes, we analyzed strains of Salmonella using a 9 kb “supercoil sensor” inserted at ten positions around the genome. The sensor contains a complete Lac operon flanked by directly repeated resolvase binding sites, and the sensor can monitor both supercoil density and transcription elongation rates in WT and mutant strains. RNA transcription caused (−) supercoiling to increase upstream and decrease downstream of highly expressed genes. Excess upstream supercoiling was relaxed by Topo I, and gyrase replenished downstream supercoil losses to maintain an equilibrium state. Strains with TS gyrase mutations growing at permissive temperature exhibited significant supercoil losses varying from 30% of WT levels to a total loss of σD at most chromosome locations. Supercoil losses were influenced by transcription because addition of rifampicin (Rif) caused supercoil density to rebound throughout the chromosome. Gyrase mutants that caused dramatic supercoil losses also reduced the transcription elongation rates throughout the genome. The observed link between RNA polymerase elongation speed and gyrase turnover suggests that bacteria with fast growth rates may generate higher supercoil densities than slow growing species.
机译:促旋酶在ATP依赖的反应中催化DNA的负超螺旋反应,该反应有助于将细菌染色体浓缩成紧密缠绕的“核苷”。原核DNA的超螺旋密度(σ)以两种形式出现。弥散性超螺旋密度(σD)在10 kb域内在染色体周围自由移动,而受约束的超螺旋密度(σC)是由于结合了丰富的蛋白质而形成的,这些蛋白质在许多位点弯曲,环化或解旋。弥散和受约束的超螺旋对WT细胞体内总负超螺旋密度的贡献大致相等,因此σ=σC+σD。出乎意料的是,与小肠沙门氏菌相比,大肠杆菌染色体的σ水平高15%。为了破译可以改变染色体的弥散超螺旋密度的关键机制,我们使用插入基因组十个位置的9 kb“超螺旋传感器”分析了沙门氏菌菌株。该传感器包含一个完整的Lac操纵子,其侧面直接重复存在resolvase结合位点,该传感器可以监控WT和突变菌株中的超螺旋密度和转录伸长率。 RNA转录导致(-)超螺旋在高表达基因的上游增加而在下游减少。 Topo I放松了多余的上游超螺旋,而回旋酶弥补了下游超螺旋的损失,从而保持了平衡状态。在允许温度下生长的具有TS促旋酶突变的菌株表现出显着的超螺旋损失,其变化范围从野生型水平的30%到大多数染色体位置的总σD损失。超螺旋损失受转录的影响,因为添加利福平(Rif)导致超螺旋密度在整个染色体中反弹。引起戏剧性的超螺旋损失的促旋酶突变体也降低了整个基因组的转录延伸率。观察到的RNA聚合酶延伸速度和旋回酶转换之间的联系表明,具有较快生长速度的细菌比较慢生长的物种可产生更高的超螺旋密度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号