首页> 美国卫生研究院文献>Plant Physiology >Simultaneous Application of Heat Drought and Virus to Arabidopsis Plants Reveals Significant Shifts in Signaling Networks
【2h】

Simultaneous Application of Heat Drought and Virus to Arabidopsis Plants Reveals Significant Shifts in Signaling Networks

机译:同时将热干旱和病毒应用于拟南芥植物揭示了信号网络的重大变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Considering global climate change, the incidence of combined drought and heat stress is likely to increase in the future and will considerably influence plant-pathogen interactions. Until now, little has been known about plants exposed to simultaneously occurring abiotic and biotic stresses. To shed some light on molecular plant responses to multiple stress factors, a versatile multifactorial test system, allowing simultaneous application of heat, drought, and virus stress, was developed in Arabidopsis (Arabidopsis thaliana). Comparative analysis of single, double, and triple stress responses by transcriptome and metabolome analysis revealed that gene expression under multifactorial stress is not predictable from single stress treatments. Hierarchical cluster and principal component analyses identified heat as the major stress factor, clearly separating heat-stressed from non-heat-stressed plants. We identified 11 genes differentially regulated in all stress combinations as well as 23 genes specifically regulated under triple stress. Furthermore, we showed that virus-treated plants displayed enhanced expression of defense genes, which was abolished in plants additionally subjected to heat and drought stress. Triple stress also reduced the expression of genes involved in the R-mediated disease response and increased the cytoplasmic protein response, which was not seen under single stress conditions. These observations suggested that abiotic stress factors significantly altered turnip mosaic virus-specific signaling networks, which led to a deactivation of defense responses and a higher susceptibility of plants. Collectively, our transcriptome and metabolome data provide a powerful resource to study plant responses during multifactorial stress and allow identifying metabolic processes and functional networks involved in tripartite interactions of plants with their environment.
机译:考虑到全球气候变化,未来干旱和高温胁迫的综合发生率可能会增加,并将大大影响植物与病原体的相互作用。到目前为止,对暴露于同时发生的非生物和生物胁迫的植物所知甚少。为了阐明分子植物对多种胁迫因素的反应,拟南芥(Arabidopsis thaliana)开发了一种多功能的多因素测试系统,可以同时施加热量,干旱和病毒胁迫。通过转录组和代谢组分析对单,双和三重应激反应的比较分析表明,单因素治疗无法预测多因素胁迫下的基因表达。层次聚类和主成分分析将热量确定为主要压力因素,从而将热压力工厂与非热压力工厂清楚地区分开。我们鉴定了在所有胁迫组合中差异调节的11个基因,以及在三重胁迫下特异性调节的23个基因。此外,我们显示了用病毒处理过的植物显示出增强的防御基因表达,在另外遭受热和干旱胁迫的植物中该基因被取消。三重胁迫还减少了R介导的疾病反应中涉及的基因表达,并增加了细胞质蛋白反应,这在单一胁迫条件下是看不到的。这些观察结果表明,非生物胁迫因素显着改变了芜菁花叶病毒特有的信号网络,从而导致防御反应失活和植物的敏感性更高。总的来说,我们的转录组和代谢组数据为研究植物在多因素胁迫下的反应提供了强大的资源,并可以识别参与植物与环境三方相互作用的代谢过程和功能网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号