首页> 美国卫生研究院文献>Plant Physiology >Inward-Rectifying K+ Channels in Root Hairs of Wheat (A Mechanism for Aluminum-Sensitive Low-Affinity K+ Uptake and Membrane Potential Control).
【2h】

Inward-Rectifying K+ Channels in Root Hairs of Wheat (A Mechanism for Aluminum-Sensitive Low-Affinity K+ Uptake and Membrane Potential Control).

机译:小麦根毛中向内整流的K +通道(铝敏感的低亲和力K +吸收和膜电位控制的机制)。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

K+ is the most abundant cation in cells of higher plants, and it plays vital roles in plant growth and development. Extensive studies on the kinetics of K+ uptake in roots have shown that K+ uptake is mediated by at least two transport mechanisms, one with a high and one with a low affinity for K+. However, the precise molecular mechanisms of K+ uptake from soils into root epidermal cells remain unknown. In the present study we have pursued the biophysical identification and characterization of mechanisms of K+ uptake into single root hairs of wheat (Triticum aestivum L.), since root hairs constitute an important site of nutrient uptake from the soil. These patch-clamp studies showed activation of a large inward current carried by K+ ions into root hairs at membrane potentials more negative than -75 mV. This K+ influx current was mediated by hyperpolarization-activated K+-selective ion channels, with a selectivity sequence for monovalent cations of K+ > Rb+ [almost equal to] NH4+ >> Na+ [almost equal to] Li+ > Cs+. Kinetic analysis of K+ channel currents yielded an apparent K+ equilibrium dissociation constant (Km) of [almost equal to]8.8 mM, which closely correlates to the major component of low-affinity K+ uptake. These channels did not inactivate during prolonged stimulation and would thus enable long-term K+ uptake driven by the plasma membrane proton-extruding pump. Aluminum, which is known to inhibit cation uptake at the root epidermis, blocked these inward-rectifying K+ channels with half-maximal current inhibition at [almost equal to]8 [mu]M free Al3+. Aluminum block of K+ channels at these Al3+ concentrations correlates closely to Al3+ phytotoxicity. It is concluded that inward-rectifying K+ channels in root hairs can function as both a physiologically important mechanism for low-affinity K+ uptake and as regulators of membrane potential. The identification of this mechanism is a major step toward a detailed molecular characterization of the multiple components involved in K+ uptake, transport, and membrane potential control in root epidermal cells.
机译:K +是高等植物细胞中最丰富的阳离子,在植物生长发育中起着至关重要的作用。根系对钾离子吸收动力学的广泛研究表明,钾离子的吸收至少由两种转运机制介导,一种对钾离子的亲和力高,而对钾离子的亲和力低。然而,从土壤中吸收K +到根表皮细胞的确切分子机制仍然未知。在本研究中,由于根毛构成了从土壤中吸收养分的重要部位,因此我们一直致力于对小麦(Triticum aestivum L.)单根毛吸收K +进行生物物理鉴定和表征。这些膜片钳研究表明,K +离子携带的大的内向电流在比-75 mV负的膜电位下激活进入根毛。该K +流入电流由超极化激活的K +选择性离子通道介导,其单价阳离子的选择性序列为K +> Rb + [几乎等于] NH4 + Na + [几乎等于] Li +> Cs +。 K +通道电流的动力学分析产生了一个表观的K +平衡解离常数(Km),几乎等于8.8 mM,这与低亲和力K +吸收的主要成分密切相关。这些通道在长时间的刺激过程中不会失活,因此可以通过质膜质子挤出泵驱动长期的钾离子吸收。已知抑制根表皮吸收阳离子的铝以最大电流抑制在几乎等于8μM的游离Al 3+处阻断了这些向内整流的K +通道。在这些Al3 +浓度下,K +通道的铝阻滞与Al3 +的植物毒性密切相关。结论是,根毛中向内整流的K +通道既可以作为低亲和力K +吸收的重要生理机制,又可以作为膜电位的调节剂。对该机制的鉴定是朝着根表皮细胞中K +吸收,转运和膜电位控制所涉及的多种成分进行详细分子表征迈出的重要一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号