首页> 美国卫生研究院文献>Philosophical Transactions of the Royal Society B: Biological Sciences >From Caenorhabditis elegans to the human connectome: a specific modular organization increases metabolic functional and developmental efficiency
【2h】

From Caenorhabditis elegans to the human connectome: a specific modular organization increases metabolic functional and developmental efficiency

机译:从秀丽隐杆线虫到人类连接体:特定的模块化组织可提高代谢功能和发育效率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The connectome, or the entire connectivity of a neural system represented by a network, ranges across various scales from synaptic connections between individual neurons to fibre tract connections between brain regions. Although the modularity they commonly show has been extensively studied, it is unclear whether the connection specificity of such networks can already be fully explained by the modularity alone. To answer this question, we study two networks, the neuronal network of Caenorhabditis elegans and the fibre tract network of human brains obtained through diffusion spectrum imaging. We compare them to their respective benchmark networks with varying modularities, which are generated by link swapping to have desired modularity values. We find several network properties that are specific to the neural networks and cannot be fully explained by the modularity alone. First, the clustering coefficient and the characteristic path length of both C. elegans and human connectomes are higher than those of the benchmark networks with similar modularity. High clustering coefficient indicates efficient local information distribution, and high characteristic path length suggests reduced global integration. Second, the total wiring length is smaller than for the alternative configurations with similar modularity. This is due to lower dispersion of connections, which means each neuron in the C. elegans connectome or each region of interest in the human connectome reaches fewer ganglia or cortical areas, respectively. Third, both neural networks show lower algorithmic entropy compared with the alternative arrangements. This implies that fewer genes are needed to encode for the organization of neural systems. While the first two findings show that the neural topologies are efficient in information processing, this suggests that they are also efficient from a developmental point of view. Together, these results show that neural systems are organized in such a way as to yield efficient features beyond those given by their modularity alone.
机译:连接组,或以网络为代表的神经系统的整个连通性,范围从各个神经元之间的突触连接到大脑区域之间的纤维束连接,范围广泛。尽管它们通常显示的模块化已经得到了广泛的研究,但尚不清楚仅通过模块化就可以完全解释这种网络的连接特性。为了回答这个问题,我们研究了两个网络,即秀丽隐杆线虫的神经元网络和通过扩散光谱成像获得的人脑的纤维束网络。我们将它们与具有不同模块化的各自基准网络进行比较,这些模块化网络是通过链接交换生成的,以具有所需的模块化值。我们发现了一些特定于神经网络的网络属性,仅凭模块化无法完全解释。首先,秀丽隐杆线虫和人类连接组的聚类系数和特征路径长度均高于具有相似模块性的基准网络。高聚类系数表明有效的本地信息分配,而高特征路径长度则表明全局集成减少。其次,总布线长度比具有类似模块性的替代配置要短。这是由于连接的分散度较低,这意味着秀丽隐杆线虫连接组中的每个神经元或人连接组中每个感兴趣的区域分别到达较少的神经节或皮质区域。第三,与替代方案相比,两个神经网络都显示出较低的算法熵。这意味着需要较少的基因来编码神经系统的组织。虽然前两个发现表明神经拓扑在信息处理中是有效的,但这表明从发展的角度来看它们也是有效的。总之,这些结果表明,神经系统的组织方式使其产生的有效特征超出了仅由其模块化所提供的特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号