首页> 美国卫生研究院文献>Molecules >Theoretical Studies of Homogeneous Catalysts Mimicking Nitrogenase
【2h】

Theoretical Studies of Homogeneous Catalysts Mimicking Nitrogenase

机译:模仿氮氧化酶的均相催化剂的理论研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen ‘fixation’ via an iron molybdenum cofactor (FeMo-co) under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N2 to various degrees. However, to date Mo(N2)(HIPTN)3N with (HIPTN)3N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N2. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.
机译:分子氮到氨的转化是关键的生物和化学过程,并且是化学和生物学中最具挑战性的主题之一。在自然界中,含钼的固氮酶在环境条件下通过铁钼辅因子(FeMo-co)进行氮“固定”。相反,在工业上,Haber-Bosch工艺在剧烈的温度和压力条件下用非均相铁催化剂将分子中的氮和氢还原为氨。该过程导致用于农业和工业目的的数百万吨氮化合物的生产,但是所需的高温和高压导致大量的能量损失,从而导致若干经济和环境问题。在过去的40年中,人们进行了许多尝试来合成简单的均相催化剂,该催化剂可以在与固氮酶相同的温和条件下活化二氮。几种化合物(几乎都含有过渡金属)已显示出不同程度的结合和活化N2的能力。然而,迄今为止,具有(HIPTN)3 N =六异丙基-叔苯基-三酰胺基胺的Mo(N 2)(HIPTN)3 N是唯一催化地进行该过程的化合物。在这篇综述中,我们描述了密度泛函理论的计算如何帮助阐明激活或固定N2的无机化合物的反应机理。这些研究提供了重要的见解,可以合理化和补充有关已知催化剂反应机理的实验结果,预测新的潜在催化剂的反应性,并有助于定制新的有效催化化合物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号