首页> 美国卫生研究院文献>Molecular Cellular Proteomics : MCP >Chlorosis as a Developmental Program in Cyanobacteria: The Proteomic Fundament for Survival and Awakening
【2h】

Chlorosis as a Developmental Program in Cyanobacteria: The Proteomic Fundament for Survival and Awakening

机译:蓝藻在蓝细菌中的发育程序:生存和觉醒的蛋白质组学基础。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cyanobacteria that do not fix atmospheric nitrogen gas survive prolonged periods of nitrogen starvation in a chlorotic, dormant state where cell growth and metabolism are arrested. Upon nutrient availability, these dormant cells return to vegetative growth within 2–3 days. This resuscitation process is highly orchestrated and relies on the stepwise reinstallation and activation of essential cellular structures and functions. We have been investigating the transition to chlorosis and the return to vegetative growth as a simple model of a cellular developmental process and a fundamental survival strategy in biology. In the present study, we used quantitative proteomics and phosphoproteomics to describe the proteomic landscape of a dormant cyanobacterium and its dynamics during the transition to vegetative growth. We identified intriguing alterations in the set of ribosomal proteins, in RuBisCO components, in the abundance of central regulators and predicted metabolic enzymes. We found O-phosphorylation as an abundant protein modification in the chlorotic state, specifically of metabolic enzymes and proteins involved in photosynthesis. Nondegraded phycobiliproteins were hyperphosphorylated in the chlorotic state. We provide evidence that hyperphosphorylation of the terminal rod linker CpcD increases the lifespan of phycobiliproteins during chlorosis.
机译:不能固定大气中氮气的蓝细菌在绿藻酸,休眠状态下可以长期存活,饥饿状态会阻止细胞的生长和新陈代谢。养分充足后,这些休眠细胞在2至3天内恢复营养生长。这种复苏过程是高度协调的,并依赖于基本细胞结构和功能的逐步重新安装和激活。我们一直在研究向萎黄病的过渡和向营养生长的回归,将其作为细胞发育过程的简单模型和生物学中的基本生存策略。在本研究中,我们使用定量蛋白质组学和磷酸化蛋白质组学来描述休眠蓝藻的蛋白质组学景观及其向营养生长过渡期间的动力学。我们确定了在核糖体蛋白,RuBisCO组件,丰富的中央调节剂和预测的代谢酶中有趣的变化。我们发现O-磷酸化是处于绿藻状态的丰富蛋白质修饰,特别是参与光合作用的代谢酶和蛋白质。未降解的藻胆蛋白在绿藻状态下被过度磷酸化。我们提供的证据表明,末端杆接头CpcD的过度磷酸化增加了萎黄病期间藻胆蛋白的寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号