首页> 美国卫生研究院文献>Microbial Cell >The logics of metabolic regulation in bacteria challenges biosensor-based metabolic engineering
【2h】

The logics of metabolic regulation in bacteria challenges biosensor-based metabolic engineering

机译:细菌中代谢调控的逻辑挑战基于生物传感器的代谢工程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Synthetic Biology (SB) aims at the rational design and engineering of novel biological functions and systems. By facilitating the engineering of living organisms, SB promises to facilitate the development of many new applications for health, biomanufacturing, and the environment. Over the last decade, SB promoted the construction of libraries of components enabling the fine-tuning of genetic circuits expression and the development of novel genome engineering methodologies for many organisms of interest. SB thus opened new perspectives in the field of metabolic engineering, which was until then mainly limited to (over)producing naturally synthesized metabolic compounds. To engineer efficient cell factories, it is key to precisely reroute cellular resources from the central carbon metabolism (CCM) to the synthetic circuitry. This task is however difficult as there is still significant lack of knowledge regarding both the function of several metabolic components and the regulation of the CCM fluxes for many industrially important bacteria. Pyruvate is a pivotal metabolite at the heart of the CCM and a key precursor for the synthesis of several commodity compounds and fine chemicals. Numerous bacterial species can also use it as a carbon source when present in the environment but bacterial, pyruvate-specific uptake systems were to be discovered. This is an issue for metabolic engineering as one can imagine to make use of pyruvate transport systems to replenish synthetic metabolic pathways towards the synthesis of chemicals of interest. Here we describe a recent study (MBio 8(5): e00976-17), which identified and characterized a pyruvate transport system in the Gram-positive (G+ve) bacterium Bacillus subtilis, a well-established biotechnological workhorse for the production of enzymes, fine chemicals and antibiotics. This study also revealed that the activity of the two-component system (TCS) responsible for its induction is retro-inhibited by the level of pyruvate influx. Following up on the open question which is whether this retro-inhibition is a generic mechanism for TCSs, we will discuss the implications in metabolic engineering.
机译:合成生物学(SB)旨在合理设计和设计新型生物学功能和系统。通过促进生命有机体的工程设计,SB承诺将促进健康,生物制造和环境领域许多新应用的开发。在过去的十年中,SB促进了组分库的构建,从而使遗传电路表达的微调和许多感兴趣生物的新型基因组工程方法的发展成为可能。 SB因此在代谢工程领域开辟了新的视野,在此之前,它主要限于(过量)生产天然合成的代谢化合物。为了设计高效的细胞工厂,准确地将细胞资源从中央碳代谢(CCM)转移到合成电路至关重要。然而,由于仍然缺乏关于几种代谢成分的功能以及许多工业上重要细菌的CCM通量调节的知识,因此该任务很困难。丙酮酸是CCM核心的关键代谢产物,是合成多种商品化合物和精细化学品的关键前体。当存在于环境中时,许多细菌物种也可以将其用作碳源,但细菌,丙酮酸盐特定的吸收系统已被发现。这是代谢工程学的一个问题,因为人们可以想象利用丙酮酸转运系统来补充合成代谢途径,从而合成感兴趣的化学物质。在这里,我们描述了一项最新研究(MBio 8(5):e00976-17),该研究鉴定并表征了革兰氏阳性(G + ve )枯草芽孢杆菌中的丙酮酸转运系统,建立了用于生产酶,精细化学品和抗生素的生物技术力量。这项研究还表明,引起丙酮酸流入的两组分系统(TCS)的活性被逆向抑制。在讨论这个逆向抑制是否是TCS的通用机制这一开放性问题之后,我们将讨论代谢工程的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号