class='kwd-title'>Keywords: Calorimetry, Sonoche'/> Disequilibrium calorimetry for determination of ultrasonic power in sonochemistry
首页> 美国卫生研究院文献>MethodsX >Disequilibrium calorimetry for determination of ultrasonic power in sonochemistry
【2h】

Disequilibrium calorimetry for determination of ultrasonic power in sonochemistry

机译:超声波化学法测定超声波功率的不平衡量热法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="kwd-title">Keywords: Calorimetry, Sonochemistry, Ultrasound class="head no_bottom_margin" id="abs0010title">AbstractThe two most characteristic properties of an ultrasonic wave are the frequency and the power. It is therefore important to determine the power in a given reactor. This can be done by calorimetry, i.e. by measuring the temperature rise in the vessel during sonication starting at thermal equilibrium with the surroundings (classic calorimetry) [1–3]. However, the classic ultrasonic calorimetry has drawbacks. In particular it is difficult to evaluate the temperature rise at thermal equilibrium, because the relevant initial time and temperature intervals are small and measurement errors in the temperature readings are large. Also the initial temperature response of the probe is complex [4]. The authors propose to start the calorimetric measurement at thermal disequilibrium, i.e. with a lower temperature in the reaction vessel. During sonication the temperature in the reaction vessel rises faster than in the surrounding and passes thermal equilibrium. The acoustic power transferred to the vessel at thermal equilibrium can then be calculated. The method consists of: class="first-line-outdent">
  • • Setting up the reaction vessel at lower temperature than the surroundings (ultrasonic bath or air).
  • • Measuring temperature rise in the reaction vessel and the surroundings during sonication.
  • • Determine the temperature rise at intercept by interpolation and calculate the ultrasonic power in the reaction vessel.
  • 机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ kwd-title”>关键字:量热法,声化学,超声 class =“ head no_bottom_margin” id =“ abs0010title”>摘要< / h2>超声波的两个最特征是频率和功率。因此,确定给定电抗器的功率很重要。这可以通过量热法来完成,即通过测量在超声处理过程中从与周围环境的热平衡开始进行的温度升高(经典量热法)[1-3]。然而,经典的超声波量热法具有缺点。特别是,由于相关的初始时间和温度间隔较小,并且温度读数的测量误差较大,因此很难评估热平衡时的温度升高。探头的初始温度响应也很复杂[4]。作者建议在热不平衡时,即在反应容器中较低的温度下开始量热法测量。在超声处理期间,反应容器中的温度上升快于周围温度,并通过热平衡。然后可以计算在热平衡时传递到容器的声功率。该方法包括: class =“ first-line-outdent”> <!-list-behavior =简单的prefix-word = mark-type = none max-label-size = 9->
  • •将反应容器的温度设置为低于周围环境(超声波浴或空气)的温度。
  • •在超声处理过程中测量反应容器和周围环境的温度升高。 li>
  • •通过插值确定截距处的温度升高并计算反应容器中的超声功率。
  • 著录项

    相似文献

    • 外文文献
    • 中文文献
    • 专利
    代理获取

    客服邮箱:kefu@zhangqiaokeyan.com

    京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
    • 客服微信

    • 服务号