首页> 美国卫生研究院文献>PLoS Computational Biology >Depth-dependent flow and pressure characteristics in cortical microvascular networks
【2h】

Depth-dependent flow and pressure characteristics in cortical microvascular networks

机译:皮质微血管网络中与深度有关的流量和压力特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A better knowledge of the flow and pressure distribution in realistic microvascular networks is needed for improving our understanding of neurovascular coupling mechanisms and the related measurement techniques. Here, numerical simulations with discrete tracking of red blood cells (RBCs) are performed in three realistic microvascular networks from the mouse cerebral cortex. Our analysis is based on trajectories of individual RBCs and focuses on layer-specific flow phenomena until a cortical depth of 1 mm. The individual RBC trajectories reveal that in the capillary bed RBCs preferentially move in plane. Hence, the capillary flow field shows laminar patterns and a layer-specific analysis is valid. We demonstrate that for RBCs entering the capillary bed close to the cortical surface (< 400 μm) the largest pressure drop takes place in the capillaries (37%), while for deeper regions arterioles are responsible for 61% of the total pressure drop. Further flow characteristics, such as capillary transit time or RBC velocity, also vary significantly over cortical depth. Comparison of purely topological characteristics with flow-based ones shows that a combined interpretation of topology and flow is indispensable. Our results provide evidence that it is crucial to consider layer-specific differences for all investigations related to the flow and pressure distribution in the cortical vasculature. These findings support the hypothesis that for an efficient oxygen up-regulation at least two regulation mechanisms must be playing hand in hand, namely cerebral blood flow increase and microvascular flow homogenization. However, the contribution of both regulation mechanisms to oxygen up-regulation likely varies over depth.
机译:需要更好地了解现实的微血管网络中的流量和压力分布,以增进我们对神经血管耦合机制和相关测量技术的理解。在这里,在来自老鼠大脑皮层的三个现实的微血管网络中执行了离散跟踪红细胞(RBC)的数值模拟。我们的分析基于各个RBC的轨迹,并着眼于特定层的流动现象,直到皮质深度为1 mm。各个RBC轨迹显示,RBC在毛细管床中优先在平面内移动。因此,毛细管流场显示出层流模式,并且特定层的分析是有效的。我们证明,对于进入靠近皮质表面(<400μm)的毛细血管床的RBC,最大的压降发生在毛细血管中(37%),而对于较深的区域,小动脉占总压降的61%。进一步的流动特性,例如毛细管通过时间或RBC速度,在整个皮质深度上也有很大变化。将纯拓扑特征与基于流的特征进行比较表明,对拓扑和流的组合解释是必不可少的。我们的结果提供了证据,对于与皮层脉管系统中的流量和压力分布有关的所有研究,考虑特定于层的差异至关重要。这些发现支持以下假设:有效的氧气上调至少必须与两种调节机制密切相关,即脑血流量增加和微血管血流均质化。但是,两种调节机制对氧气上调的贡献可能随深度而变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号