首页> 美国卫生研究院文献>PLoS Computational Biology >Bioenergetics-based modeling of Plasmodium falciparum metabolism reveals its essential genes nutritional requirements and thermodynamic bottlenecks
【2h】

Bioenergetics-based modeling of Plasmodium falciparum metabolism reveals its essential genes nutritional requirements and thermodynamic bottlenecks

机译:基于生物能学的恶性疟原虫代谢模型揭示了其关键基因营养需求和热力学瓶颈

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Novel antimalarial therapies are urgently needed for the fight against drug-resistant parasites. The metabolism of malaria parasites in infected cells is an attractive source of drug targets but is rather complex. Computational methods can handle this complexity and allow integrative analyses of cell metabolism. In this study, we present a genome-scale metabolic model (iPfa) of the deadliest malaria parasite, Plasmodium falciparum, and its thermodynamics-based flux analysis (TFA). Using previous absolute concentration data of the intraerythrocytic parasite, we applied TFA to iPfa and predicted up to 63 essential genes and 26 essential pairs of genes. Of the 63 genes, 35 have been experimentally validated and reported in the literature, and 28 have not been experimentally tested and include previously hypothesized or novel predictions of essential metabolic capabilities. Without metabolomics data, four of the genes would have been incorrectly predicted to be non-essential. TFA also indicated that substrate channeling should exist in two metabolic pathways to ensure the thermodynamic feasibility of the flux. Finally, analysis of the metabolic capabilities of P. falciparum led to the identification of both the minimal nutritional requirements and the genes that can become indispensable upon substrate inaccessibility. This model provides novel insight into the metabolic needs and capabilities of the malaria parasite and highlights metabolites and pathways that should be measured and characterized to identify potential thermodynamic bottlenecks and substrate channeling. The hypotheses presented seek to guide experimental studies to facilitate a better understanding of the parasite metabolism and the identification of targets for more efficient intervention.
机译:对抗耐药性寄生虫迫切需要新颖的抗疟疾疗法。感染细胞中疟原虫的代谢是药物靶标的诱人来源,但相当复杂。计算方法可以处理这种复杂性,并可以对细胞代谢进行综合分析。在这项研究中,我们介绍了最致命的疟原虫,恶性疟原虫的基因组规模代谢模型(iPfa)及其基于热力学的通量分析(TFA)。使用以前的红细胞内寄生虫的绝对浓度数据,我们将TFA应用于iPfa,并预测了多达63个必需基因和26个必需基因对。在这63个基因中,有35个已通过实验验证并在文献中进行了报道,还有28个尚未进行实验测试,其中包括先前关于基本代谢能力的假设或新颖预测。没有代谢组学数据,将有四个基因被错误地预测为非必需基因。 TFA还表明底物通道化应存在于两个代谢途径中,以确保通量的热力学可行性。最后,对恶性疟原虫代谢能力的分析导致对最低营养需求和可能因底物不可及而变得不可缺少的基因的鉴定。该模型为疟疾寄生虫的代谢需求和能力提供了新颖的见解,并突出了应测量和表征以识别潜在的热力学瓶颈和底物通道的代谢产物和途径。提出的假设旨在指导实验研究,以促进对寄生虫代谢的更好理解,并确定更有效干预的目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号