首页> 美国卫生研究院文献>PLoS Computational Biology >Application of Rigidity Theory to the Thermostabilization of Lipase A from Bacillus subtilis
【2h】

Application of Rigidity Theory to the Thermostabilization of Lipase A from Bacillus subtilis

机译:刚性理论在枯草芽孢杆菌脂肪酶A热稳定中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Protein thermostability is a crucial factor for biotechnological enzyme applications. Protein engineering studies aimed at improving thermostability have successfully applied both directed evolution and rational design. However, for rational approaches, the major challenge remains the prediction of mutation sites and optimal amino acid substitutions. Recently, we showed that such mutation sites can be identified as structural weak spots by rigidity theory-based thermal unfolding simulations of proteins. Here, we describe and validate a unique, ensemble-based, yet highly efficient strategy to predict optimal amino acid substitutions at structural weak spots for improving a protein’s thermostability. For this, we exploit the fact that in the majority of cases an increased structural rigidity of the folded state has been found as the cause for thermostability. When applied prospectively to lipase A from Bacillus subtilis, we achieved both a high success rate (25% over all experimentally tested mutations, which raises to 60% if small-to-large residue mutations and mutations in the active site are excluded) in predicting significantly thermostabilized lipase variants and a remarkably large increase in those variants’ thermostability (up to 6.6°C) based on single amino acid mutations. When considering negative controls in addition and evaluating the performance of our approach as a binary classifier, the accuracy is 63% and increases to 83% if small-to-large residue mutations and mutations in the active site are excluded. The gain in precision (predictive value for increased thermostability) over random classification is 1.6-fold (2.4-fold). Furthermore, an increase in thermostability predicted by our approach significantly points to increased experimental thermostability (p < 0.05). These results suggest that our strategy is a valuable complement to existing methods for rational protein design aimed at improving thermostability.
机译:蛋白质的热稳定性是生物技术酶应用的关键因素。旨在提高热稳定性的蛋白质工程研究已成功应用了定向进化和合理设计。然而,对于合理的方法,主要的挑战仍然是突变位点和最佳氨基酸取代的预测。最近,我们表明可以通过基于刚度理论的蛋白质热展开模拟将此类突变位点识别为结构弱点。在这里,我们描述并验证了一种独特的,基于集合的高效策略,以预测结构弱点处的最佳氨基酸取代,从而提高蛋白质的热稳定性。为此,我们利用以下事实:在大多数情况下,发现折叠状态的结构刚度增加是引起热稳定性的原因。当前瞻性地应用于枯草芽孢杆菌的脂肪酶A时,我们在预测中既达到了很高的成功率(在所有实验测试的突变中占25%,如果排除了小到大的残基突变和活性位点的突变,则可以提高到60%)。基于单个氨基酸突变,脂肪酶变体具有显着的热稳定性,并且这些变体的热稳定性(高达6.6°C)显着提高。当另外考虑阴性对照并评估我们作为二元分类器的方法的性能时,如果不包括小到大的残基突变和活性位点的突变,则准确度为63%,提高到83%。与随机分类相比,精度提高(提高热稳定性的预测值)为1.6倍(2.4倍)。此外,通过我们的方法预测的热稳定性的提高明显表明实验热稳定性提高(p <0.05)。这些结果表明,我们的策略是对旨在提高热稳定性的合理蛋白质设计的现有方法的宝贵补充。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号