首页> 美国卫生研究院文献>PLoS Computational Biology >Tensor Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of Areas M1 and V1
【2h】

Tensor Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of Areas M1 and V1

机译:张量分析揭示了与区域M1和V1的不同计算角色平行的不同人口结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cortical firing rates frequently display elaborate and heterogeneous temporal structure. One often wishes to compute quantitative summaries of such structure—a basic example is the frequency spectrum—and compare with model-based predictions. The advent of large-scale population recordings affords the opportunity to do so in new ways, with the hope of distinguishing between potential explanations for why responses vary with time. We introduce a method that assesses a basic but previously unexplored form of population-level structure: when data contain responses across multiple neurons, conditions, and times, they are naturally expressed as a third-order tensor. We examined tensor structure for multiple datasets from primary visual cortex (V1) and primary motor cortex (M1). All V1 datasets were ‘simplest’ (there were relatively few degrees of freedom) along the neuron mode, while all M1 datasets were simplest along the condition mode. These differences could not be inferred from surface-level response features. Formal considerations suggest why tensor structure might differ across modes. For idealized linear models, structure is simplest across the neuron mode when responses reflect external variables, and simplest across the condition mode when responses reflect population dynamics. This same pattern was present for existing models that seek to explain motor cortex responses. Critically, only dynamical models displayed tensor structure that agreed with the empirical M1 data. These results illustrate that tensor structure is a basic feature of the data. For M1 the tensor structure was compatible with only a subset of existing models.
机译:皮质的放电频率经常显示出精细而异质的时间结构。人们经常希望计算出这种结构的定量汇总(一个基本的例子就是频谱),并与基于模型的预测进行比较。大规模人口录音的出现提供了以新的方式进行录音的机会,希望能够区分出为什么反应随时间变化的可能解释。我们引入了一种评估种群水平结构的基本但以前尚未探索的形式的方法:当数据包含跨多个神经元,条件和时间的响应时,它们自然表示为三阶张量。我们检查了主要视觉皮层(V1)和主要运动皮层(M1)的多个数据集的张量结构。在神经元模式下,所有V1数据集都是“最简单的”(自由度相对较小),而在条件模式下,所有M1数据集都是最简单的。从表面水平的响应特征无法推断出这些差异。形式上的考虑表明为什么张量结构可能在不同模式之间有所不同。对于理想的线性模型,当响应反映外部变量时,跨神经元模式的结构最简单,而当响应反映种群动态时,跨条件模式的结构最简单。对于试图解释运动皮层响应的现有模型,也存在相同的模式。重要的是,只有动力学模型显示的张量结构与经验M1数据一致。这些结果说明张量结构是数据的基本特征。对于M1,张量结构仅与一部分现有模型兼容。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号