首页> 外文期刊>PLoS Computational Biology >Tensor Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of Areas M1 and V1
【24h】

Tensor Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of Areas M1 and V1

机译:张量分析揭示了与M1和V1区域的不同计算角色平行的不同人口结构

获取原文
获取外文期刊封面目录资料

摘要

Cortical firing rates frequently display elaborate and heterogeneous temporal structure.One often wishes to compute quantitative summaries of such structure—a basic exampleis the frequency spectrum—and compare with model-based predictions. The advent oflarge-scale population recordings affords the opportunity to do so in new ways, with thehope of distinguishing between potential explanations for why responses vary with time.We introduce a method that assesses a basic but previously unexplored form of population-level structure: when data contain responses across multiple neurons, conditions, andtimes, they are naturally expressed as a third-order tensor. We examined tensor structurefor multiple datasets from primary visual cortex (V1) and primary motor cortex (M1). All V1datasets were ‘simplest’ (there were relatively few degrees of freedom) along the neuronmode, while all M1 datasets were simplest along the condition mode. These differencescould not be inferred from surface-level response features. Formal considerations suggestwhy tensor structure might differ across modes. For idealized linear models, structure issimplest across the neuron mode when responses reflect external variables, and simplestacross the condition mode when responses reflect population dynamics. This same patternwas present for existing models that seek to explain motor cortex responses. Critically, onlydynamical models displayed tensor structure that agreed with the empirical M1 data. Theseresults illustrate that tensor structure is a basic feature of the data. For M1 the tensor structure was compatible with only a subset of existing models.
机译:皮质发射速率经常显示复杂的时间结构。人们经常希望计算这种结构的定量摘要(一个基本的例子是频谱),并与基于模型的预测进行比较。大规模人口记录的出现提供了以新的方式进行这种变化的机会,希望能够区分出响应为何随时间变化的潜在解释。我们引入一种方法来评估基本但以前尚未探索的人口水平结构形式:何时数据包含跨多个神经元,条件和时间的响应,它们自然地表示为三阶张量。我们检查了来自主要视觉皮层(V1)和主要运动皮层(M1)的多个数据集的张量结构。沿着神经元模式,所有V1数据集都是“最简单的”(自由度相对较小),而沿着条件模式,所有M1数据集都是最简单的。这些差异不能从表面水平的响应特征中推断出来。形式上的考虑建议为什么张量结构可能在不同模式之间不同。对于理想的线性模型,当响应反映外部变量时,跨神经元模式的结构最简单;当响应反映种群动态时,跨条件模型的结构最简单。对于试图解释运动皮层响应的现有模型也存在相同的模式。重要的是,只有动力学模型显示的张量结构与经验M1数据一致。这些结果说明张量结构是数据的基本特征。对于M1,张量结构仅与现有模型的一部分兼容。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号