首页> 美国卫生研究院文献>PLoS Computational Biology >Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments
【2h】

Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments

机译:通过非相互作用分子片段的受限分子动力学模拟对蛋白质进行结构精制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels), each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD) of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good agreement with the consensus model of the resting state VSD and the spin-spin distance histograms from ESR/DEER experiments on T4 lysozyme are accurately reproduced.
机译:了解多种构象状态是了解膜转运蛋白功能的前提。不幸的是,用常规的高分辨率方法确定所有这些功能上重要的构象态的详细原子结构通常是困难且不成功的。在某些情况下,生物物理和生化方法可以提供重要的互补结构信息,可以借助高级计算方法来利用这些信息来导出特定构象状态的结构模型。特别地,功能和光谱测量结合定点突变构成了获取这些混合分辨率结构模型的重要信息来源。然而,这种策略的一个非常普遍的问题是难以同时整合来自多个独立实验的所有信息,这些实验涉及不同的突变或化学标记,以得出与数据一致的独特结构模型。为了解决这个问题,开发了一种新颖的受约束的分子动力学结构改进方法,以同时纳入多个实验确定的约束条件(例如,工程化的金属桥或自旋标记),每个约束条件都被视为具有所有原子细节的单个分子片段。每个分子片段的内部结构都经过实际处理,而不同分子片段之间没有相互作用,以避免非物理的空间碰撞。同时利用来自所有分子片段的信息来约束主链,以精炼蛋白质构象状态的三维模型。通过完善处于静止状态的Kv1.2钾离子通道的电压感应域(VSD)的结构,并通过探索与T4溶菌酶相连的自旋标记之间的距离直方图来说明该方法。所得的VSD结构与静止状态VSD的共有模型非常吻合,并且可以精确地复制ESR / DEER实验中T4溶菌酶的自旋-自旋距离直方图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号