首页> 外文学位 >Structural studies of organic monolayer and protein-membrane systems via molecular dynamics computer simulations.
【24h】

Structural studies of organic monolayer and protein-membrane systems via molecular dynamics computer simulations.

机译:通过分子动力学计算机模拟对有机单层和蛋白质膜系统进行结构研究。

获取原文
获取原文并翻译 | 示例

摘要

Great interest exists among chemists, physicists, biologists, materials scientists and others, in learning more about the microscopic structure of organic thin films and protein-membrane complexes. In this work, we undertook structural investigations into two such systems, using molecular dynamics simulations as our tool. On the one hand, we studied different models of an alkane self-assembled monolayer, in order to improve our understanding of the structural effects of such parameters as the chain packing density in the monolayer plane, and the strength of the interactions between the chains and the model substrate surface. We found that the SAM-substrate interaction is very important to the SAM structure, and that by varying the strength of this interaction alone, we could produce SAMs either with or without long-range in-plane order (much like alkylthiol and alkylsilane SAMs, respectively). On the other hand, we performed extensive analysis of a family of model hydrated protein-membrane systems, in order to better understand the structural interrelation of a membrane protein, its associated membrane, and the surrounding solvent. Our basic model was a cytochrome c molecule attached to an alkane SAM and surrounded by water; we explored models with different amounts of water, different SAM endgroups, and differing coordination number of the heme iron atom. We found that the overall protein structure is largely conserved, that a polar-endgroup SAM interacts more strongly with the protein than does a nonpolar SAM, and that increased hydration tends to mitigate the effects of changing other parameters. Structural measurements from our models, such as the electron density profile and the protein's orientation and radius of gyration, were in reasonable agreement with experimental spectroscopic and scattering measurements.
机译:化学家,物理学家,生物学家,材料科学家及其他人士对学习有机薄膜和蛋白质膜复合物的微观结构有更多兴趣。在这项工作中,我们使用分子动力学模拟作为我们的工具,对两个这样的系统进行了结构研究。一方面,我们研究了烷烃自组装单层的不同模型,以增进我们对单层平面中链堆积密度,链之间的相互作用强度等参数的结构效果的理解。模型基材表面。我们发现,SAM与底物之间的相互作用对于SAM结构非常重要,并且通过单独改变这种相互作用的强度,我们可以制备具有或不具有长程面内顺序的SAM(非常类似于烷基硫醇和烷基硅烷SAM,分别)。另一方面,我们对一系列模型水合蛋白-膜系统进行了广泛的分析,以更好地了解膜蛋白,其相关膜和周围溶剂的结构相互关系。我们的基本模型是附着在烷烃SAM上并被水包围的细胞色素 c 分子;我们探索了具有不同水量,不同SAM端基和不同血红素铁原子配位数的模型。我们发现总体蛋白质结构在很大程度上是保守的,极性端基SAM与蛋白质的相互作用比非极性SAM更强烈,水合增加往往会减轻更改其他参数的影响。我们模型的结构测量值,例如电子密度分布图和蛋白质的方向和回转半径,与实验光谱和散射测量值基本吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号