首页> 美国卫生研究院文献>PLoS Computational Biology >Learning to Estimate Dynamical State with Probabilistic Population Codes
【2h】

Learning to Estimate Dynamical State with Probabilistic Population Codes

机译:学习用概率人口代码估计动态状态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tracking moving objects, including one’s own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, “probabilistic population codes.” We show that a recurrent neural network—a modified form of an exponential family harmonium (EFH)—that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states.
机译:追踪运动物体(包括自己的身体)是高等生物的基本能力,在许多感知和运动任务中起着核心作用。虽然尚不清楚大脑如何学习跟踪和预测物体的动力学,但众所周知,状态估计的过程可以完全从嘈杂的观测数据中学习。当动力学简单地与加性高斯噪声成线性关系时,最佳解决方案是众所周知的卡尔曼滤波器(KF),可以通过潜变量密度估计(EM算法)来学习其参数。但是,大脑并不直接操纵矩阵和向量,而是用神经元群体的放电率(“概率群体代码”)来表示概率分布。我们证明,采用线性概率总体代码作为输入的递归神经网络(一种指数型家庭和声(EFH)的改进形式)可以在无需监督的情况下学习估计线性动力系统的状态。在观察到对移动物体位置的一系列总体响应(峰值计数)后,网络学习表示物体的速度,并在下一个时间步长上形成关于位置的近乎最佳的预测。该结果基于我们以前的工作,表明类似的网络可以学习执行多传感器集成并协调静态刺激的转换。受过训练的网络的接受域也对大脑的发育和学习做出定性预测:对于未明确出现在输入中的高阶动态状态,调整会逐渐出现,对低阶状态的延迟调整会出现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号