首页> 美国卫生研究院文献>PLoS Computational Biology >Specificity and Affinity Quantification of Flexible Recognition from Underlying Energy Landscape Topography
【2h】

Specificity and Affinity Quantification of Flexible Recognition from Underlying Energy Landscape Topography

机译:潜在能源景观地形的柔性识别的特异性和亲和力量化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition.
机译:对于许多细胞活动而言,生物分子识别的灵活性至关重要。柔性识别通常导致中等亲和力但具有高特异性,这与高亲和力和高特异性相结合的传统观点相反。此外,对柔性在生物分子识别中的作用的定量理解仍然具有挑战性。在这里,我们通过量化潜在的状态密度来量化具有或不具有灵活性的内在生物分子识别能量格局,从而迎接挑战。我们通过内在结合能态势的形貌对热力学内在特异性进行了定量,并通过结合率对了动力学上的特异性进行了定量。我们发现,热力学和动力学特异性密切相关。此外,我们发现柔韧性一方面降低了结合亲和力,但另一方面却增加了结合特异性,亲和力和特异性的降低或增加比例与柔韧性程度密切相关。这表明更多(更少)的灵活性导致亲和力和特异性之间较弱(更强)的耦合。我们的工作为以前的关于灵活性,亲和力和特异性之间关系的定性研究提供了理论基础和定量解释。此外,我们发现折叠能态与绑定更相关,表明绑定有助于识别过程中的折叠。最后,我们证明了在弱柔韧性下,刚性结合和孤立的折叠能态可以整合整个结合-能态态。我们的结果提供了一种新颖的方法来量化柔性生物分子识别中的亲和力和特异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号