首页> 美国卫生研究院文献>PLoS Computational Biology >The Role of Additive Neurogenesis and Synaptic Plasticity in a Hippocampal Memory Model with Grid-Cell Like Input
【2h】

The Role of Additive Neurogenesis and Synaptic Plasticity in a Hippocampal Memory Model with Grid-Cell Like Input

机译:加性神经发生和突触可塑性在具有网格细胞输入的海马记忆模型中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, we presented a study of adult neurogenesis in a simplified hippocampal memory model. The network was required to encode and decode memory patterns despite changing input statistics. We showed that additive neurogenesis was a more effective adaptation strategy compared to neuronal turnover and conventional synaptic plasticity as it allowed the network to respond to changes in the input statistics while preserving representations of earlier environments. Here we extend our model to include realistic, spatially driven input firing patterns in the form of grid cells in the entorhinal cortex. We compare network performance across a sequence of spatial environments using three distinct adaptation strategies: conventional synaptic plasticity, where the network is of fixed size but the connectivity is plastic; neuronal turnover, where the network is of fixed size but units in the network may die and be replaced; and additive neurogenesis, where the network starts out with fewer initial units but grows over time. We confirm that additive neurogenesis is a superior adaptation strategy when using realistic, spatially structured input patterns. We then show that a more biologically plausible neurogenesis rule that incorporates cell death and enhanced plasticity of new granule cells has an overall performance significantly better than any one of the three individual strategies operating alone. This adaptation rule can be tailored to maximise performance of the network when operating as either a short- or long-term memory store. We also examine the time course of adult neurogenesis over the lifetime of an animal raised under different hypothetical rearing conditions. These growth profiles have several distinct features that form a theoretical prediction that could be tested experimentally. Finally, we show that place cells can emerge and refine in a realistic manner in our model as a direct result of the sparsification performed by the dentate gyrus layer.
机译:最近,我们提出了在简化的海马记忆模型中对成人神经发生的研究。尽管更改了输入统计信息,但仍需要网络对存储模式进行编码和解码。我们表明,与神经元更新和常规突触可塑性相比,加性神经发生是一种更有效的适应策略,因为它使网络能够响应输入统计数据的变化,同时保留较早环境的表示。在这里,我们扩展了模型,以包括内嗅皮层中网格单元形式的,受空间驱动的逼真的输入触发模式。我们使用三种不同的适应策略在一系列空间环境中比较网络性能:传统的突触可塑性,其中网络的大小固定,但连接性是可塑性的;神经元更新,其中网络的大小固定,但网络中的单元可能会死亡并被替换;和加性神经发生,其中网络以较少的初始单位开始,但随着时间的推移而增长。我们确认当使用现实的,空间结构的输入模式时,加性神经发生是一种优越的适应策略。然后,我们表明,结合细胞死亡和增强的新颗粒细胞可塑性的生物学上似乎更合理的神经发生规则的总体性能明显优于单独运行的三种单独策略中的任何一种。当作为短期或长期存储器存储运行时,可以调整此适应规则以最大化网络的性能。我们还研究了在不同假设饲养条件下饲养的动物的整个成年神经发生的时间过程。这些生长曲线具有几个不同的特征,这些特征形成可以通过实验进行测试的理论预测。最后,我们证明了齿状回齿层进行的稀疏化的直接结果是,在我们的模型中位置细胞可以以逼真的方式出现和细化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号