首页> 美国卫生研究院文献>PLoS Computational Biology >Cellularly-Driven Differences in Network Synchronization Propensity Are Differentially Modulated by Firing Frequency
【2h】

Cellularly-Driven Differences in Network Synchronization Propensity Are Differentially Modulated by Firing Frequency

机译:网络同步倾向的蜂窝驱动差异通过触发频率进行差分调制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spatiotemporal pattern formation in neuronal networks depends on the interplay between cellular and network synchronization properties. The neuronal phase response curve (PRC) is an experimentally obtainable measure that characterizes the cellular response to small perturbations, and can serve as an indicator of cellular propensity for synchronization. Two broad classes of PRCs have been identified for neurons: Type I, in which small excitatory perturbations induce only advances in firing, and Type II, in which small excitatory perturbations can induce both advances and delays in firing. Interestingly, neuronal PRCs are usually attenuated with increased spiking frequency, and Type II PRCs typically exhibit a greater attenuation of the phase delay region than of the phase advance region. We found that this phenomenon arises from an interplay between the time constants of active ionic currents and the interspike interval. As a result, excitatory networks consisting of neurons with Type I PRCs responded very differently to frequency modulation compared to excitatory networks composed of neurons with Type II PRCs. Specifically, increased frequency induced a sharp decrease in synchrony of networks of Type II neurons, while frequency increases only minimally affected synchrony in networks of Type I neurons. These results are demonstrated in networks in which both types of neurons were modeled generically with the Morris-Lecar model, as well as in networks consisting of Hodgkin-Huxley-based model cortical pyramidal cells in which simulated effects of acetylcholine changed PRC type. These results are robust to different network structures, synaptic strengths and modes of driving neuronal activity, and they indicate that Type I and Type II excitatory networks may display two distinct modes of processing information.
机译:神经元网络中时空模式的形成取决于细胞和网络同步属性之间的相互作用。神经元阶段反应曲线(PRC)是一项实验可得的量度,可表征细胞对小扰动的反应,并可作为细胞同步化倾向的指标。已经为神经元确定了两大类的PRCs:I型,其中小的兴奋性摄动仅引起射击的进展; II型,其中小的兴奋性摄动可引起射击的进展和延迟。有趣的是,神经元PRCS通常以增加的尖峰频率衰减,并且II型PRC通常表现出比相位超前区域更大的相位延迟区域的衰减。我们发现这种现象是由于活性离子电流的时间常数和尖峰间隔之间的相互作用引起的。结果,与由具有II型PRCS的神经元组成的兴奋性网络相比,由具有I型PRCS的神经元组成的兴奋性网络对频率调制的响应非常不同。具体来说,增加的频率会导致II型神经元网络的同步性急剧下降,而频率只会增加I型神经元网络中受影响最小的同步性。这些结果在使用Morris-Lecar模型对两种类型的神经元进行通用建模的网络中以及在基于霍奇金-赫克斯利模型的皮质锥体细胞组成的网络中得到了证明,其中乙酰胆碱的模拟作用改变了PRC类型。这些结果对于不同的网络结构,突触强度和驱动神经元活动的模式具有鲁棒性,并且表明I型和II型兴奋性网络可能显示两种不同的信息处理模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号