首页> 美国卫生研究院文献>PLoS Computational Biology >Brain Rhythms Reveal a Hierarchical Network Organization
【2h】

Brain Rhythms Reveal a Hierarchical Network Organization

机译:脑节律揭示了分层网络组织

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recordings of ongoing neural activity with EEG and MEG exhibit oscillations of specific frequencies over a non-oscillatory background. The oscillations appear in the power spectrum as a collection of frequency bands that are evenly spaced on a logarithmic scale, thereby preventing mutual entrainment and cross-talk. Over the last few years, experimental, computational and theoretical studies have made substantial progress on our understanding of the biophysical mechanisms underlying the generation of network oscillations and their interactions, with emphasis on the role of neuronal synchronization. In this paper we ask a very different question. Rather than investigating how brain rhythms emerge, or whether they are necessary for neural function, we focus on what they tell us about functional brain connectivity. We hypothesized that if we were able to construct abstract networks, or “virtual brains”, whose dynamics were similar to EEG/MEG recordings, those networks would share structural features among themselves, and also with real brains. Applying mathematical techniques for inverse problems, we have reverse-engineered network architectures that generate characteristic dynamics of actual brains, including spindles and sharp waves, which appear in the power spectrum as frequency bands superimposed on a non-oscillatory background dominated by low frequencies. We show that all reconstructed networks display similar topological features (e.g. structural motifs) and dynamics. We have also reverse-engineered putative diseased brains (epileptic and schizophrenic), in which the oscillatory activity is altered in different ways, as reported in clinical studies. These reconstructed networks show consistent alterations of functional connectivity and dynamics. In particular, we show that the complexity of the network, quantified as proposed by Tononi, Sporns and Edelman, is a good indicator of brain fitness, since virtual brains modeling diseased states display lower complexity than virtual brains modeling normal neural function. We finally discuss the implications of our results for the neurobiology of health and disease.
机译:使用EEG和MEG进行的持续神经活动的记录在非振荡背景下显示特定频率的振荡。振荡在功率谱中显示为对数刻度上均匀分布的频带集合,从而防止了相互夹带和串扰。在过去的几年中,实验,计算和理论研究在我们理解网络振荡及其相互作用基础的生物物理机制方面取得了实质性进展,重点是神经元同步的作用。在本文中,我们提出了一个非常不同的问题。与其研究脑节律如何出现,或它们是否对神经功能是必要的,不如研究它们在告诉我们有关功能性脑连通性方面的知识。我们假设,如果我们能够构建动态类似于EEG / MEG记录的抽象网络或“虚拟大脑”,那么这些网络将在彼此之间以及与真实大脑共享结构特征。应用数学技术解决逆问题,我们采用了逆向工程网络结构,可生成实际大脑的特征动力学,包括纺锤体和尖锐波,它们在功率谱中显示为叠加在低频主导的非振荡背景上的频带。我们表明,所有重建的网络都显示相似的拓扑特征(例如结构主题)和动力学。我们还进行了逆向工程推定的患病大脑(癫痫和精神分裂症),其振荡活动以不同方式改变,如临床研究中报道。这些重建的网络显示出功能连通性和动力学的一致变化。特别是,我们证明了网络的复杂性(如Tononi,Sporns和Edelman所提出的那样量化)是大脑适应性的良好指标,因为模拟患病状态的虚拟大脑显示的复杂性低于模拟正常神经功能的虚拟大脑。最后,我们讨论了我们的结果对健康和疾病的神经生物学的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号