首页> 外文学位 >Evolution, hierarchy and modular organization in complex networks.
【24h】

Evolution, hierarchy and modular organization in complex networks.

机译:复杂网络中的演化,层次结构和模块化组织。

获取原文
获取原文并翻译 | 示例

摘要

Large systems in nature and civilization share some important organizing principles uncovered in the framework of complex network research. Here we aim to present a few advances in understanding the generic topological characteristics of these systems. We start with an introduction to basic concepts of network research, continuing with a repertoire of well studied network examples and a brief history of previous modelling efforts. Next, we present a detailed investigation of scientific collaboration networks, with special focus on the role of internal links in determining the networks's scaling properties, and on limitations of certain measurements imposed by the database.; Many real networks in nature and society share two generic properties: they are scale free and they display a high degree of clustering. We show that the scale free nature and high clustering of real networks are the consequence of a hierarchical organization, implying that small groups of nodes form increasingly large groups in a hierarchical manner, while maintaining a scale free topology. In hierarchical networks the clustering coefficient follows a strict scaling law, which can be used to identify the presence of a hierarchical organization in real networks. We find that several real networks, such as the World Wide Web, actor network, the Internet at the domain level and the semantic web obey this scaling law, indicating that hierarchy is a fundamental characteristic of many complex systems.; We then focus on the metabolic network of 43 distinct organisms and show that many small, highly connected topological modules combine in a hierarchical manner into larger, less cohesive units, their number and degree of clustering following a power law. Within Escherichia coli we find that the uncovered hierarchical modularity closely overlaps with known metabolic functions. We show that enzyme essentiality is not randomly distributed in the metabolic network, on the contrary, essential enzymes tend to cluster into a few small, well defined modules of the metabolism. Finally, we present an enzyme evolution-based model for metabolic network growth. This model reproduces the observed scale free and hierarchical organization of metabolic networks using local wiring rules.
机译:自然界和文明界的大型系统共享一些重要的组织原理,这些原理是在复杂的网络研究框架中发现的。在这里,我们旨在提出一些了解这些系统的通用拓扑特征的进展。我们首先介绍网络研究的基本概念,然后继续研究大量的网络示例,并简要回顾以前的建模工作。接下来,我们将对科学协作网络进行详细的调查,特别关注内部链接在确定网络的缩放属性方面的作用,以及数据库所施加的某些度量的局限性。自然界和社会中的许多真实网络共有两个通用属性:它们是无标度的,并且显示出高度的集群性。我们表明,无标度的性质和真实网络的高度聚类是分层组织的结果,这意味着节点的小型组以分层的方式形成越来越大的组,同时保持了无标度的拓扑。在分层网络中,聚类系数遵循严格的缩放定律,该定律可用于识别实际网络中分层组织的存在。我们发现有几个真实的网络,例如万维网,参与者网络,域级别的Internet和语义网络都遵循此缩放定律,这表明层次结构是许多复杂系统的基本特征。然后,我们关注43种不同生物的代谢网络,并发现许多小的,高度连接的拓扑模块以分层的方式组合为较大的,内聚力较小的单元,它们的数量和聚类程度遵循幂律。在大肠杆菌中,我们发现未发现的分层模块与已知的代谢功能紧密重叠。我们表明,酶的必需性不是在代谢网络中随机分布的,相反,必需酶往往会聚集到一些小的,定义明确的代谢模块中。最后,我们提出了基于酶进化的代谢网络生长模型。该模型使用局部布线规则重现了观察到的代谢网络的无标度和分层组织。

著录项

  • 作者

    Ravasz, Erzsebet.;

  • 作者单位

    University of Notre Dame.;

  • 授予单位 University of Notre Dame.;
  • 学科 Physics Condensed Matter.; Biology Cell.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 细胞生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号