首页> 美国卫生研究院文献>PLoS Computational Biology >Platos Cave Algorithm: Inferring Functional Signaling Networks from Early Gene Expression Shadows
【2h】

Platos Cave Algorithm: Inferring Functional Signaling Networks from Early Gene Expression Shadows

机译:柏拉图的洞穴算法:从早期基因表达阴影推断功能性信号网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Improving the ability to reverse engineer biochemical networks is a major goal of systems biology. Lesions in signaling networks lead to alterations in gene expression, which in principle should allow network reconstruction. However, the information about the activity levels of signaling proteins conveyed in overall gene expression is limited by the complexity of gene expression dynamics and of regulatory network topology. Two observations provide the basis for overcoming this limitation: a. genes induced without de-novo protein synthesis (early genes) show a linear accumulation of product in the first hour after the change in the cell's state; b. The signaling components in the network largely function in the linear range of their stimulus-response curves. Therefore, unlike most genes or most time points, expression profiles of early genes at an early time point provide direct biochemical assays that represent the activity levels of upstream signaling components. Such expression data provide the basis for an efficient algorithm (Plato's Cave algorithm; PLACA) to reverse engineer functional signaling networks. Unlike conventional reverse engineering algorithms that use steady state values, PLACA uses stimulated early gene expression measurements associated with systematic perturbations of signaling components, without measuring the signaling components themselves. Besides the reverse engineered network, PLACA also identifies the genes detecting the functional interaction, thereby facilitating validation of the predicted functional network. Using simulated datasets, the algorithm is shown to be robust to experimental noise. Using experimental data obtained from gonadotropes, PLACA reverse engineered the interaction network of six perturbed signaling components. The network recapitulated many known interactions and identified novel functional interactions that were validated by further experiment. PLACA uses the results of experiments that are feasible for any signaling network to predict the functional topology of the network and to identify novel relationships.
机译:改善对生物化学网络进行反向工程的能力是系统生物学的主要目标。信号网络中的病变导致基因表达的改变,原则上应允许网络重建。但是,有关基因表达整体表达的信号蛋白活性水平的信息受到基因表达动力学和调控网络拓扑结构复杂性的限制。两种观察提供了克服此限制的基础:在没有新蛋白合成的情况下诱导的基因(早期基因)在细胞状态改变后的第一个小时内显示出线性积聚的产物; b。网络中的信令组件主要在其刺激响应曲线的线性范围内发挥作用。因此,与大多数基因或大多数时间点不同,早期基因在早期时间点的表达谱提供了代表上游信号传导成分活性水平的直接生化测定。这样的表达数据为有效的算法(Plato's Cave算法; PLACA)提供了基础,以逆向工程化功能信令网络。与使用稳态值的常规逆向工程算法不同,PLCA使用与信号成分的系统性扰动相关的受激早期基因表达测量,而无需测量信号成分本身。除逆向工程网络外,PLACA还鉴定检测功能相互作用的基因,从而有助于验证预测的功能网络。使用模拟数据集,该算法显示出对实验噪声的鲁棒性。利用从促性腺激素获得的实验数据,PLACA对六个干扰信号成分的相互作用网络进行了反向工程。该网络概述了许多已知的交互作用,并确定了新的功能性交互作用,这些交互作用已通过进一步的实验进行了验证。 PLACA使用对任何信令网络都可行的实验结果来预测网络的功能拓扑并确定新颖的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号