首页> 美国卫生研究院文献>PLoS Computational Biology >Conformational Changes and Slow Dynamics through MicrosecondPolarized Atomistic Molecular Simulation of an Integral Kv1.2 Ion Channel
【2h】

Conformational Changes and Slow Dynamics through MicrosecondPolarized Atomistic Molecular Simulation of an Integral Kv1.2 Ion Channel

机译:构象变化和微秒级的缓慢动力学整体Kv1.2离子通道的极化原子分子模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Structure and dynamics of voltage-gated ion channels, in particular the motion of the S4 helix, is a highly interesting and hotly debated topic in current membrane protein research. It has critical implications for insertion and stabilization of membrane proteins as well as for finding how transitions occur in membrane proteins—not to mention numerous applications in drug design. Here, we present a full 1 µs atomic-detail molecular dynamics simulation of an integral Kv1.2 ion channel, comprising 120,000 atoms. By applying 0.052 Vm of hyperpolarization, we observe structural rearrangements, including up to 120° rotation of the S4 segment, changes in hydrogen-bonding patterns, but only low amounts of translation. A smaller rotation (∼35°) of the extracellular end of all S4 segments is present also in a reference 0.5 µs simulation without applied field, which indicates that the crystal structure might be slightly different from the natural state of the voltage sensor. The conformation change upon hyperpolarization is closely coupled to an increase in 310 helix contents in S4, starting from the intracellular side. This could support a model for transition from the crystal structure where the hyperpolarizationdestabilizes S4–lipid hydrogen bonds, which leads to the helixrotating to keep the arginine side chains away from the hydrophobic phase, andthe driving force for final relaxation by downward translation is partlyentropic, which would explain the slow process. The coordinates of thetransmembrane part of the simulated channel actually stay closer to the recentlydetermined higher-resolution Kv1.2 chimera channel than the starting structurefor the entire second half of the simulation (0.5–1 µs).Together with lipids binding in matching positions and significant thinning ofthe membrane also observed in experiments, this provides additional support forthe predictive power of microsecond-scale membrane protein simulations.
机译:电压门控离子通道的结构和动力学,特别是S4螺旋的运动,是当前膜蛋白研究中一个非常有趣且引起争议的话题。它对膜蛋白的插入和稳定化以及寻找膜蛋白如何发生转变具有关键意义-更不用说在药物设计中的众多应用了。在这里,我们提供了一个完整的1 µs原子细节分子动力学模拟,该模拟包括一个120,000个原子的完整Kv1.2离子通道。通过施加0.052 V / nm的超极化,我们观察到结构重排,包括S4片段的最大120°旋转,氢键模式的变化,但翻译量很少。在没有施加电场的情况下,在参考值为0.5 µs的模拟中,所有S4段的细胞外端旋转角度也较小(约35°),这表明晶体结构可能与电压传感器的自然状态略有不同。从细胞内开始,超极化时的构象变化与S4中310螺旋含量的增加紧密相关。这可以支持从晶体结构过渡到超极化的模型使S4-脂质氢键不稳定,从而导致螺旋旋转以使精氨酸侧链远离疏水相,并且通过向下平移最终放松的动力部分是熵,这可以解释缓慢的过程。的坐标模拟通道的跨膜部分实际上距离最近的通道较近确定比起始结构更高分辨率的Kv1.2嵌合通道在整个仿真的后半部分(0.5-1 µs)。与脂质结合在匹配的位置和显着变薄的在实验中也观察到了膜,这为微秒级膜蛋白模拟的预测能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号