首页> 美国卫生研究院文献>PLoS Biology >Testing Electrostatic Complementarity in Enzyme Catalysis: Hydrogen Bonding in the Ketosteroid Isomerase Oxyanion Hole
【2h】

Testing Electrostatic Complementarity in Enzyme Catalysis: Hydrogen Bonding in the Ketosteroid Isomerase Oxyanion Hole

机译:测试酶催化中的静电互补性:酮固醇异构酶氧合阴离子孔中的氢键结合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A longstanding proposal in enzymology is that enzymes are electrostatically and geometrically complementary to the transition states of the reactions they catalyze and that this complementarity contributes to catalysis. Experimental evaluation of this contribution, however, has been difficult. We have systematically dissected the potential contribution to catalysis from electrostatic complementarity in ketosteroid isomerase. Phenolates, analogs of the transition state and reaction intermediate, bind and accept two hydrogen bonds in an active site oxyanion hole. The binding of substituted phenolates of constant molecular shape but increasing p K a models the charge accumulation in the oxyanion hole during the enzymatic reaction. As charge localization increases, the NMR chemical shifts of protons involved in oxyanion hole hydrogen bonds increase by 0.50–0.76 ppm/p K a unit, suggesting a bond shortening of ˜0.02 Å/p K a unit. Nevertheless, there is little change in binding affinity across a series of substituted phenolates (ΔΔG = −0.2 kcal/mol/p K a unit). The small effect of increased charge localization on affinity occurs despite the shortening of the hydrogen bonds and a large favorable change in binding enthalpy (ΔΔH = −2.0 kcal/mol/p K a unit). This shallow dependence of binding affinity suggests that electrostatic complementarity in the oxyanion hole makes at most a modest contribution to catalysis of ˜300-fold. We propose that geometrical complementarity between the oxyanion hole hydrogen-bond donors and the transition state oxyanion provides a significant catalytic contribution, and suggest that KSI, like other enzymes, achieves its catalytic prowess through a combination of modest contributions from several mechanisms rather than from a single dominant contribution.
机译:酶学上的一个长期建议是,酶在静电和几何上与其催化的反应的过渡态互补,并且这种互补性有助于催化。然而,对这种贡献进行实验评估是困难的。我们已经系统地解剖了酮类固醇异构酶中静电互补对催化的潜在贡献。酚盐,过渡态和反应中间体的类似物,在活性位点的氧阴离子孔中结合并接受两个氢键。恒定分子形状但p K a增加的取代酚盐的结合模拟了酶促反应期间氧阴离子孔中的电荷积累。随着电荷局部化的增加,参与氧阴离子孔氢键的质子的NMR化学位移增加了0.50-0.76 ppm / p K a单位,表明键缩短了约0.02Å/ p K a单位。然而,在一系列取代的酚盐之间的结合亲和力几乎没有变化(ΔΔG= -0.2 kcal / mol / p K a单位)。尽管氢键的缩短和结合焓的大的有利变化(ΔΔH= -2.0 kcal / mol / p K a单位),但对电荷亲和力增加的影响仍然很小。结合亲和力的这种浅层依赖性表明,氧阴离子孔中的静电互补性至多〜300倍的催化作用最多。我们建议,氧阴离子孔氢键供体和过渡态氧阴离子之间的几何互补性提供了重要的催化作用,并建议KSI像其他酶一样,通过几种机制的适度贡献而不是通过其他机制来实现其催化能力。单一的主要贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号