首页> 外文期刊>Journal of the American Chemical Society >Testing Geometrical Discrimination within an Enzyme Active Site: Constrained Hydrogen Bonding in the Ketosteroid Isomerase Oxyanion Hole
【24h】

Testing Geometrical Discrimination within an Enzyme Active Site: Constrained Hydrogen Bonding in the Ketosteroid Isomerase Oxyanion Hole

机译:测试酶活性位点内的几何区分:酮类固醇异构酶氧合氰化物孔中受约束的氢键

获取原文
获取原文并翻译 | 示例
       

摘要

Enzymes are classically proposed to accelerate reactions by binding substrates within active-site environments that are structurally preorganized to optimize binding interactions with reaction transition states rather than ground states. This is a remarkably formidable task considering the limited 0.1-1 A scale of most substrate rearrangements. The flexibility of active-site functional groups along the coordinate of substrate rearrangement, the distance scale on which enzymes can distinguish structural rearrangement, and the energetic significance of discrimination on that scale remain open questions that are fundamental to a basic physical understanding of enzyme active sites and catalysis. We bring together 1.2-1.5 A resolution X-ray crystallography, ~1H and ~(19)F NMR spectroscopy, quantum mechanical calculations, and transition-state analogue binding measurements to test the distance scale on which noncovalent forces can constrain the structural relaxation or translation of side chains and ligands along a specific coordinate and the energetic consequences of such geometric constraints within the active site of bacterial ketosteroid isomerase (KSI). Our results strongly suggest that packing and binding interactions within the KSI active site can constrain local side-chain reorientation and prevent hydrogen bond shortening by 0.1 A or less. Further, this constraint has substantial energetic effects on ligand binding and stabilization of negative charge within the oxyanion hole. These results provide evidence that subtle geometric effects, indistinguishable in most X-ray crystallographic structures, can have significant energetic consequences and highlight the importance of using synergistic experimental approaches to dissect enzyme function.
机译:传统上提出了通过在活性位环境中结合底物来加速反应的酶,所述活性位环境在结构上被预先组织以优化与反应过渡态而不是基态的结合相互作用。考虑到大多数基板重排的有限的0.1-1 A规模,这是一项非常艰巨的任务。活性位点官能团沿底物重排的坐标的灵活性,酶可以区分结构重排的距离尺度以及在该尺度上区分的能量意义仍然是悬而未决的问题,这些问题是对酶活性位点进行基本物理理解的基础和催化。我们将1.2-1.5 A分辨率X射线晶体学,〜1H和〜(19)F NMR光谱,量子力学计算和过渡态类似物结合测量结合起来,以测试非共价力可约束结构弛豫或相互作用的距离尺度。侧链和配体沿特定坐标的平移以及此类几何约束在细菌酮固醇异构酶(KSI)活性位点内的能量后果。我们的结果强烈表明,KSI活性位点内的堆积和结合相互作用可以限制局部侧链的重新定向,并防止氢键缩短0.1 A或更小。此外,该限制对配体结合和氧阴离子孔内负电荷的稳定具有实质性的能量作用。这些结果提供了证据,表明在大多数X射线晶体学结构中无法区分的微妙的几何效应会产生重大的能量后果,并突出了使用协同实验方法解析酶功能的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号