首页> 美国卫生研究院文献>Environmental Health Perspectives >Spatiotemporal Modeling of Ozone Levels in Quebec (Canada): A Comparison of Kriging Land-Use Regression (LUR) and Combined Bayesian Maximum Entropy–LUR Approaches
【2h】

Spatiotemporal Modeling of Ozone Levels in Quebec (Canada): A Comparison of Kriging Land-Use Regression (LUR) and Combined Bayesian Maximum Entropy–LUR Approaches

机译:魁北克(加拿大)臭氧水平的时空模拟:克里格法土地利用回归(LUR)和贝叶斯最大熵-LUR组合方法的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: Ambient air ozone (O3) is a pulmonary irritant that has been associated with respiratory health effects including increased lung inflammation and permeability, airway hyperreactivity, respiratory symptoms, and decreased lung function. Estimation of O3 exposure is a complex task because the pollutant exhibits complex spatiotemporal patterns. To refine the quality of exposure estimation, various spatiotemporal methods have been developed worldwide.Objectives: We sought to compare the accuracy of three spatiotemporal models to predict summer ground-level O3 in Quebec, Canada.Methods: We developed a land-use mixed-effects regression (LUR) model based on readily available data (air quality and meteorological monitoring data, road networks information, latitude), a Bayesian maximum entropy (BME) model incorporating both O3 monitoring station data and the land-use mixed model outputs (BME-LUR), and a kriging method model based only on available O3 monitoring station data (BME kriging). We performed leave-one-station-out cross-validation and visually assessed the predictive capability of each model by examining the mean temporal and spatial distributions of the average estimated errors.Results: The BME-LUR was the best predictive model (R2 = 0.653) with the lowest root mean-square error (RMSE ;7.06 ppb), followed by the LUR model (R2 = 0.466, RMSE = 8.747) and the BME kriging model (R2 = 0.414, RMSE = 9.164).Conclusions: Our findings suggest that errors of estimation in the interpolation of O3 concentrations with BME can be greatly reduced by incorporating outputs from a LUR model developed with readily available data.Citation: Adam-Poupart A, Brand A, Fournier M, Jerrett M, Smargiassi A. 2014. Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy–LUR approaches. Environ Health Perspect 122:970–976; 
机译:背景:环境空气臭氧(O3)是一种肺刺激物,与呼吸健康相关,包括增加的肺部炎症和通透性,气道反应过度,呼吸道症状和肺功能下降。估算O3暴露是一项复杂的任务,因为污染物表现出复杂的时空模式。为了完善暴露量估算的质量,全世界已开发出各种时空方法。目的:我们试图比较三种时空模型的准确性,以预测加拿大魁北克夏季地面O3的方法。基于现成数据(空气质量和气象监测数据,道路网络信息,纬度)的效应回归(LUR)模型,结合了O3监测站数据和土地利用混合模型输出(BME)的贝叶斯最大熵(BME)模型-LUR),以及仅基于可用的O3监测站数据的Briging方法模型(BME kriging)。我们进行了留一站式交叉验证,并通过检查平均估计误差的平均时空分布在视觉上评估了每个模型的预测能力。结果:BME-LUR是最佳预测模型(R 2 = 0.653),均方根误差最低(RMSE; 7.06 ppb),其次是LUR模型(R 2 = 0.466,RMSE = 8.747)和BME克里金法结论(R 2 = 0.414,RMSE = 9.164)。结论:我们的发现表明,通过结合由LME模型开发的LUR模型的输出,可以大大减少OME浓度对BME插值的估计误差。引用:Adam-Poupart A,Brand A,Fournier M,Jerrett M,Smargiassi A.2014。魁北克(加拿大)臭氧水平的时空模拟:克里格法,土地利用回归(LUR)和综合方法的比较贝叶斯最大熵-LUR方法。环境健康展望122:970–976;

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号