首页> 美国卫生研究院文献>Frontiers in Bioengineering and Biotechnology >Gene Co-expression Network Reveals Potential New Genes Related to Sugarcane Bagasse Degradation in Trichoderma reesei RUT-30
【2h】

Gene Co-expression Network Reveals Potential New Genes Related to Sugarcane Bagasse Degradation in Trichoderma reesei RUT-30

机译:基因共表达网络揭示了与里氏木霉RUT-30中甘蔗渣降解相关的潜在新基因

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The biomass-degrading fungus Trichoderma reesei has been considered a model for cellulose degradation, and it is the primary source of the industrial enzymatic cocktails used in second-generation (2G) ethanol production. However, although various studies and advances have been conducted to understand the cellulolytic system and the transcriptional regulation of T. reesei, the whole set of genes related to lignocellulose degradation has not been completely elucidated. In this study, we inferred a weighted gene co-expression network analysis based on the transcriptome dataset of the T. reesei RUT-C30 strain aiming to identify new target genes involved in sugarcane bagasse breakdown. In total, ~70% of all the differentially expressed genes were found in 28 highly connected gene modules. Several cellulases, sugar transporters, and hypothetical proteins coding genes upregulated in bagasse were grouped into the same modules. Among them, a single module contained the most representative core of cellulolytic enzymes (cellobiohydrolase, endoglucanase, β-glucosidase, and lytic polysaccharide monooxygenase). In addition, functional analysis using Gene Ontology (GO) revealed various classes of hydrolytic activity, cellulase activity, carbohydrate binding and cation:sugar symporter activity enriched in these modules. Several modules also showed GO enrichment for transcription factor activity, indicating the presence of transcriptional regulators along with the genes involved in cellulose breakdown and sugar transport as well as other genes encoding proteins with unknown functions. Highly connected genes (hubs) were also identified within each module, such as predicted transcription factors and genes encoding hypothetical proteins. In addition, various hubs contained at least one DNA binding site for the master activator Xyr1 according to our in silico analysis. The prediction of Xyr1 binding sites and the co-expression with genes encoding carbohydrate active enzymes and sugar transporters suggest a putative role of these hubs in bagasse cell wall deconstruction. Our results demonstrate a vast range of new promising targets that merit additional studies to improve the cellulolytic potential of T. reesei strains and to decrease the production costs of 2G ethanol.
机译:生物质降解真菌里氏木霉被认为是纤维素降解的模型,它是第二代(2G)乙醇生产中使用的工业酶混合物的主要来源。然而,尽管已经进行了各种研究和进展以了解里氏木霉的纤维素分解系统和转录调控,但是与木质纤维素降解有关的整套基因还没有完全阐明。在这项研究中,我们基于里氏木霉RUT-C30菌株的转录组数据集推断了加权基因共表达网络分析,目的是鉴定参与甘蔗渣分解的新靶基因。总共,在28个高度连接的基因模块中发现了所有差异表达基因中的约70%。在蔗渣中上调的几种纤维素酶,糖转运蛋白和假设的蛋白质编码基因被分组到同一模块中。其中,单个模块包含最具代表性的纤维素分解酶核心(纤维二糖水解酶,内切葡聚糖酶,β-葡萄糖苷酶和裂解多糖单加氧酶)。此外,使用基因本体论(GO)进行的功能分析揭示了丰富的这些模块中的各种水解活性,纤维素酶活性,碳水化合物结合和阳离子:糖同向转运蛋白活性。几个模块还显示了转录因子活性的GO富集,表明存在转录调节因子以及参与纤维素分解和糖转运的基因,以及编码功能未知的蛋白质的其他基因。在每个模块中还鉴定出高度连接的基因(集线器),例如预测的转录因子和编码假设蛋白的基因。此外,根据我们的计算机分析,各种集线器都包含至少一个用于主激活子Xyr1的DNA结合位点。 Xyr1结合位点的预测以及与编码碳水化合物活性酶和糖转运蛋白的基因的共表达表明,这些集线器在甘蔗渣细胞壁解构中具有假定的作用。我们的结果表明,有许多新的有前途的目标值得进一步研究,以提高里氏木霉菌株的纤维素分解潜能,并降低2G乙醇的生产成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号