首页> 美国卫生研究院文献>Frontiers in Bioengineering and Biotechnology >Oxygen Uptake Rate Soft-Sensing via Dynamic kLa Computation: Cell Volume and Metabolic Transition Prediction in Mammalian Bioprocesses
【2h】

Oxygen Uptake Rate Soft-Sensing via Dynamic kLa Computation: Cell Volume and Metabolic Transition Prediction in Mammalian Bioprocesses

机译:通过动态kLa计算的摄氧率软传感:哺乳动物生物过程中的细胞体积和代谢转变预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In aerobic cell cultivation processes, dissolved oxygen is a key process parameter, and an optimal oxygen supply has to be ensured for proper process performance. To achieve optimal growth and/or product formation, the rate of oxygen transfer has to be in right balance with the consumption by cells. In this study, a 15 L mammalian cell culture bioreactor was characterized with respect to kLa under varying process conditions. The resulting dynamic kLa description combined with functions for the calculation of oxygen concentrations under prevailing process conditions led to an easy-to-apply model, that allows real-time calculation of the oxygen uptake rate (OUR) throughout the bioprocess without off-gas analyzers. Subsequently, the established OUR soft-sensor was applied in a series of 13 CHO fed-batch cultivations. The OUR was found to be directly associated with the amount of viable biomass in the system, and deploying of cell volumes instead of cell counts led to higher correlations. A two-segment linear model predicted the viable biomass in the system sufficiently. The segmented model was necessary due to a metabolic transition in which the specific consumption of oxygen changed. The aspartate to glutamate ratio was identified as an indicator of this metabolic shift. The detection of such transitions is enabled by a combination of the presented dynamic OUR method with another state-of-the-art viable biomass soft-sensor. In conclusion, this hyphenated technique is a robust and powerful tool for advanced bioprocess monitoring and control based exclusively on bioreactor characteristics.
机译:在有氧细胞培养过程中,溶解氧是关键的过程参数,为确保适当的过程性能,必须确保最佳的氧气供应。为了实现最佳的生长和/或产物形成,氧气的传输速率必须与细胞的消耗保持正确的平衡。在这项研究中,针对15 k哺乳动物细胞培养生物反应器,在不同的工艺条件下针对kLa进行了表征。所得的动态kLa描述与主要工艺条件下的氧气浓度计算功能相结合,形成了易于应用的模型,该模型可在没有废气分析仪的情况下实时计算整个生物过程中的氧气吸收率(OUR)。 。随后,将建立的OUR软传感器应用于一系列13种CHO补料分批培养。发现OUR与系统中可行生物量的数量直接相关,并且部署细胞体积而不是细胞数量会导致更高的相关性。两段线性模型可以充分预测系统中的可行生物量。由于新陈代谢的转变,氧气的单位消耗量发生了变化,因此需要分段模型。天冬氨酸与谷氨酸的比例被确定为该代谢变化的指标。通过将提出的动态OUR方法与另一种最先进的可行生物质软传感器结合使用,可以检测此类转变。总之,这种联用技术是仅基于生物反应器特性进行高级生物过程监控的强大而强大的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号