首页> 美国卫生研究院文献>Frontiers in Cellular Neuroscience >High Pressure and Ca2+ Produce an Inverse Modulation of Synaptic Input Strength and Network Excitability in the Rat Dentate Gyrus
【2h】

High Pressure and Ca2+ Produce an Inverse Modulation of Synaptic Input Strength and Network Excitability in the Rat Dentate Gyrus

机译:高压和Ca2 +在大鼠齿状回中产生突触输入强度和网络兴奋性的反调节。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hyperbaric environments induce the high pressure neurological syndrome (HPNS) characterized by hyperexcitability of the central nervous system (CNS) and memory impairment. Human divers and other animals experience the HPNS at pressures beyond 1.1 MPa. High pressure depresses synaptic transmission and alters its dynamics in various animal models. Medial perforant path (MPP) synapses connecting the medial entorhinal cortex with the hippocampal formation are suppressed by 50% at 10.1MPa. Reduction of synaptic inputs is paradoxically associated with enhanced ability of dentate gyrus (DG)’ granule cells (GCs) to generate spikes at high pressure. This mechanism allows MPP inputs to elicit standard GC outputs at 0.1–25 Hz frequencies under hyperbaric conditions. An increased postsynaptic gain of MPP inputs probably allows diving animals to perform in hyperbaric environments, but makes them vulnerable to high intensity/frequency stimuli producing hyperexcitability. Increasing extracellular Ca2+ ([Ca2+]o) partially reverted pressure-mediated depression of MPP inputs and increased MPP’s low-pass filter properties. We postulated that raising [Ca2+]o in addition to increase synaptic inputs may reduce network excitability in the DG potentially improving its function and reducing sensitivity to high intensity and pathologic stimuli. For this matter, we activated the MPP with single and 50 Hz frequency stimuli that simulated physiologic and deleterious conditions, while assessing the GC’s output under various conditions of pressure and [Ca2+]o. Our results reveal that the pressure and [Ca2+]o produce an inverse modulation on synaptic input strength and network excitability. These coincident phenomena suggest a potential general mechanism of networks that adjusts gain as an inverse function of synaptic inputs’ strength. Such mechanism may serve for adaptation to variable pressure and other physiological and pathological conditions and may explain the increased sensitivity to strong sensory stimulation suffered by human deep-divers and cetaceans under hyperbaric conditions.
机译:高压环境会诱发以中枢神经系统(CNS)过度兴奋和记忆障碍为特征的高压神经系统综合症(HPNS)。潜水员和其他动物在压力超过1.1 MPa时会经历HPNS。高压抑制突触传递并改变其在各种动物模型中的动力学。连接内侧内嗅皮质和海马结构的内侧穿孔路径(MPP)突触在10.1MPa时被抑制了50%。突触输入的减少与齿状回(DG)的颗粒细胞(GC)在高压下产生尖峰的能力增强有关。这种机制允许MPP输入在高压条件下以0.1–25 Hz频率引发标准GC输出。 MPP输入的突触后增益增加可能使潜水动物在高压环境中活动,但使它们容易受到产生高兴奋性的高强度/频率刺激的影响。细胞外Ca 2 + ([Ca 2 + ] o)的增加部分地恢复了压力介导的MPP输入抑制,并提高了MPP的低通滤波器性能。我们推测除了增加突触输入外,提高[Ca 2 + ] o可能会降低DG中的网络兴奋性,从而可能改善DG的功能并降低其对高强度和病理刺激的敏感性。为此,我们用单个和50 Hz频率刺激来激活MPP,以模拟生理和有害条件,同时在各种压力和[Ca 2 + ] o条件下评估GC的输出。我们的结果表明,压力和[Ca 2 + ] o对突触输入强度和网络兴奋性产生反调制。这些巧合的现象表明,潜在的网络通用机制会将增益调整为突触输入强度的反函数。这种机制可以用于适应可变压力以及其他生理和病理状况,并且可以解释在高压条件下人类深潜者和鲸类对强烈的感觉刺激的敏感性增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号