首页> 外文期刊>Frontiers in Cellular Neuroscience >High Pressure and [Ca 2+ ] Produce an Inverse Modulation of Synaptic Input Strength and Network Excitability in the Rat Dentate Gyrus
【24h】

High Pressure and [Ca 2+ ] Produce an Inverse Modulation of Synaptic Input Strength and Network Excitability in the Rat Dentate Gyrus

机译:高压和[ca <粗体> 2 + ]在大鼠齿轮转象中产生突触输入强度和网络兴奋性的逆调制

获取原文
           

摘要

Hyperbaric environments induce the high pressure neurological syndrome (HPNS) characterized by hyperexcitability of the central nervous system (CNS) and memory impairment. Human divers and other animals experience the HPNS at pressures beyond 1.1 MPa. High pressure depresses synaptic transmission and alters its dynamics in various animal models. Medial perforant path (MPP) synapses connecting the medial entorhinal cortex with the hippocampal formation are suppressed by 50% at 10.1MPa. Reduction of synaptic inputs is paradoxically associated with enhanced ability of dentate gyrus (DG)’ granule cells (GCs) to generate spikes at high pressure. This mechanism allows MPP inputs to elicit standard GC outputs at 0.1–25 Hz frequencies under hyperbaric conditions. An increased postsynaptic gain of MPP inputs probably allows diving animals to perform in hyperbaric environments, but makes them vulnerable to high intensity/frequency stimuli producing hyperexcitability. Increasing extracellular Ca~(2+)([Ca~(2+)]_(o)) partially reverted pressure-mediated depression of MPP inputs and increased MPP’s low-pass filter properties. We postulated that raising [Ca~(2+)]_(o)in addition to increase synaptic inputs may reduce network excitability in the DG potentially improving its function and reducing sensitivity to high intensity and pathologic stimuli. For this matter, we activated the MPP with single and 50 Hz frequency stimuli that simulated physiologic and deleterious conditions, while assessing the GC’s output under various conditions of pressure and [Ca~(2+)]_(o). Our results reveal that the pressure and [Ca~(2+)]_(o)produce an inverse modulation on synaptic input strength and network excitability. These coincident phenomena suggest a potential general mechanism of networks that adjusts gain as an inverse function of synaptic inputs’ strength. Such mechanism may serve for adaptation to variable pressure and other physiological and pathological conditions and may explain the increased sensitivity to strong sensory stimulation suffered by human deep-divers and cetaceans under hyperbaric conditions.
机译:高压环境诱导高压神经综合征(HPN),其特征在于中枢神经系统(CNS)和记忆障碍的过度尺寸。人类潜水员和其他动物在超过1.1 MPa的压力下经历HPN。高压压下突触传输,并在各种动物模型中改变其动态。在10.1MPa下,将内侧梭形皮质与海马形成的内侧梭形皮质连接的内侧穿孔路径(MPP)突触抑制了50%。突触输入的减少是矛盾的,与牙齿过滤(DG)颗粒细胞(GCS)产生高压产生尖峰的增强能力矛盾。该机制允许MPP输入在高压条件下以0.1-25 Hz频率引出标准GC输出。 MPP输入的增加增加可能允许潜水动物在高压环境中执行,但使它们容易受到产生过度兴奋性的高强度/频率刺激。增加细胞外Ca〜(2 +)([Ca〜(2 +)] _(O))部分恢复的压力介导的MPP输入抑制和增加的MPP低通滤波器性能。我们假设提高[Ca〜(2 +)] _(o)除了增加突触输入可能降低DG中的网络兴奋,可能改善其功能并降低对高强度和病理刺激的敏感性。对于此事,我们用单一和50 Hz频率刺激激活MPP,即模拟生理和有害条件,同时在各种压力条件下评估GC的输出和[Ca〜(2 +)] _(O)。我们的结果表明,压力和[CA〜(2 +)] _(o)在突触输入强度和网络兴奋性上产生反向调制。这些巧合现象表明了网络的潜在一般机制,调整了突触投入强度的逆函数的增益。这种机制可以用于适应可变压力和其他生理和病理条件,并且可以解释人类深潜水员和鲸类在高压条件下遭受的强烈感觉刺激的敏感性增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号