首页> 美国卫生研究院文献>Frontiers in Cell and Developmental Biology >Direct Reprogramming of Spiral Ganglion Non-neuronal Cells into Neurons: Toward Ameliorating Sensorineural Hearing Loss by Gene Therapy
【2h】

Direct Reprogramming of Spiral Ganglion Non-neuronal Cells into Neurons: Toward Ameliorating Sensorineural Hearing Loss by Gene Therapy

机译:螺旋神经节非神经细胞直接重编程为神经元:通过基因疗法改善感觉神经性听力丧失

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Primary auditory neurons (PANs) play a critical role in hearing by transmitting sound information from the inner ear to the brain. Their progressive degeneration is associated with excessive noise, disease and aging. The loss of PANs leads to permanent hearing impairment since they are incapable of regenerating. Spiral ganglion non-neuronal cells (SGNNCs), comprised mainly of glia, are resident within the modiolus and continue to survive after PAN loss. These attributes make SGNNCs an excellent target for replacing damaged PANs through cellular reprogramming. We used the neurogenic pioneer transcription factor Ascl1 and the auditory neuron differentiation factor NeuroD1 to reprogram SGNNCs into induced neurons (iNs). The overexpression of both Ascl1 and NeuroD1 in vitro generated iNs at high efficiency. Transcriptome analyses revealed that iNs displayed a transcriptome profile resembling that of endogenous PANs, including expression of several key markers of neuronal identity: Tubb3, Map2, Prph, Snap25, and Prox1. Pathway analyses indicated that essential pathways in neuronal growth and maturation were activated in cells upon neuronal induction. Furthermore, iNs extended projections toward cochlear hair cells and cochlear nucleus neurons when cultured with each respective tissue. Taken together, our study demonstrates that PAN-like neurons can be generated from endogenous SGNNCs. This work suggests that gene therapy can be a viable strategy to treat sensorineural hearing loss caused by degeneration of PANs.
机译:初级听觉神经元(PANs)通过将声音信息从内耳传递到大脑在听力中起关键作用。它们的进行性退化与过度的噪音,疾病和衰老有关。 PAN的丢失会导致永久性听力受损,因为它们无法再生。螺旋神经节非神经元细胞(SGNNCs)主要由神经胶质细胞组成,位于螺旋体中,并在PAN丧失后继续存活。这些属性使SGNNC成为通过细胞重新编程替换受损PAN的绝佳目标。我们使用神经源性先驱转录因子Ascl1和听觉神经元分化因子NeuroD1将SGNNCs重新编程为诱导神经元(iNs)。 Ascl1和NeuroD1的过度表达在体外高效生成iNs。转录组分析显示,iNs的转录组谱类似于内源性PAN,包括神经元身份的几个关键标志物的表达:Tubb3,Map2,Prph,Snap25和Prox1。途径分析表明,神经元诱导后,细胞中神经元生长和成熟的基本途径被激活。此外,当与各个组织一起培养时,iNs向耳蜗毛细胞和耳蜗核神经元延伸投影。两者合计,我们的研究表明可以从内源性SGNNCs产生PAN样神经元。这项工作表明基因治疗可能是治疗由PAN变性引起的感觉神经性听力损失的可行策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号