首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Introducing a Comprehensive Framework to Measure Spike-LFP Coupling
【2h】

Introducing a Comprehensive Framework to Measure Spike-LFP Coupling

机译:引入全面的框架来测量Spike-LFP耦合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Measuring the coupling of single neuron's spiking activities to the local field potentials (LFPs) is a method to investigate neuronal synchronization. The most important synchronization measures are phase locking value (PLV), spike field coherence (SFC), pairwise phase consistency (PPC), and spike-triggered correlation matrix synchronization (SCMS). Synchronization is generally quantified using the PLV and SFC. PLV and SFC methods are either biased on the spike rates or the number of trials. To resolve these problems the PPC measure has been introduced. However, there are some shortcomings associated with the PPC measure which is unbiased only for very high spike rates. However evaluating spike-LFP phase coupling (SPC) for short trials or low number of spikes is a challenge in many studies. Lastly, SCMS measures the correlation in terms of phase in regions around the spikes inclusive of the non-spiking events which is the major difference between SCMS and SPC. This study proposes a new framework for predicting a more reliable SPC by modeling and introducing appropriate machine learning algorithms namely least squares, Lasso, and neural networks algorithms where through an initial trend of the spike rates, the ideal SPC is predicted for neurons with low spike rates. Furthermore, comparing the performance of these three algorithms shows that the least squares approach provided the best performance with a correlation of 0.99214 and R2 of 0.9563 in the training phase, and correlation of 0.95969 and R2 of 0.8842 in the test phase. Hence, the results show that the proposed framework significantly enhances the accuracy and provides a bias-free basis for small number of spikes for SPC as compared to the conventional methods such as PLV method. As such, it has the general ability to correct for the bias on the number of spike rates.
机译:测量单个神经元的突跳活动与局部场电位(LFP)的耦合是研究神经元同步的一种方法。最重要的同步措施是锁相值(PLV),尖峰场相干性(SFC),成对相位一致性(PPC)和尖峰触发的相关矩阵同步(SCMS)。同步通常使用PLV和SFC进行量化。 PLV和SFC方法在加标率或试验次数上存在偏差。为了解决这些问题,引入了PPC措施。但是,PPC测量存在一些缺点,这些缺点仅在非常高的尖峰频率下才是无偏见的。然而,在许多研究中,为短期试验或峰值数量少而评估峰值LFP相耦合(SPC)是一项挑战。最后,SCMS测量峰值周围区域的相位相关性,包括非峰值事件,这是SCMS和SPC之间的主要区别。这项研究提出了一个新的框架,用于通过建模和引入适当的机器学习算法(即最小二乘,套索和神经网络算法)来预测更可靠的SPC,其中通过峰值速率的初始趋势,可以为低峰值神经元预测理想的SPC。费率。此外,比较这三种算法的性能表明,最小二乘方法提供了最佳性能,在训练阶段的相关性为0.99214和R 2 为0.9563,相关性为0.95969和R 测试阶段中0.8842的2 。因此,结果表明,与传统方法(例如PLV方法)相比,所提出的框架显着提高了准确性,并为SPC的少量尖峰提供了无偏差基础。这样,它具有校正尖峰频率数量偏差的一般能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号