首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation
【2h】

Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation

机译:学习的快速融合要求在处理任务中下橄榄核和小脑深核之间具有可塑性:闭环机器人模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The cerebellum is known to play a critical role in learning relevant patterns of activity for adaptive motor control, but the underlying network mechanisms are only partly understood. The classical long-term synaptic plasticity between parallel fibers (PFs) and Purkinje cells (PCs), which is driven by the inferior olive (IO), can only account for limited aspects of learning. Recently, the role of additional forms of plasticity in the granular layer, molecular layer and deep cerebellar nuclei (DCN) has been considered. In particular, learning at DCN synapses allows for generalization, but convergence to a stable state requires hundreds of repetitions. In this paper we have explored the putative role of the IO-DCN connection by endowing it with adaptable weights and exploring its implications in a closed-loop robotic manipulation task. Our results show that IO-DCN plasticity accelerates convergence of learning by up to two orders of magnitude without conflicting with the generalization properties conferred by DCN plasticity. Thus, this model suggests that multiple distributed learning mechanisms provide a key for explaining the complex properties of procedural learning and open up new experimental questions for synaptic plasticity in the cerebellar network.
机译:众所周知,小脑在学习有关活动模式以进行自适应运动控制方面起着至关重要的作用,但是其底层的网络机制只是部分被理解。由下橄榄(IO)驱动的平行纤维(PF)与浦肯野细胞(PC)之间的经典长期突触可塑性只能解释学习的局限性。最近,已经考虑了在颗粒层,分子层和小脑深核(DCN)中其他形式的可塑性的作用。特别是,通过DCN突触学习可以进行概括,但要收敛到稳定状态,需要进行数百次重复。在本文中,我们通过赋予IO-DCN连接以合适的权重并探索其在闭环机器人操纵任务中的作用,探索了IO-DCN连接的假定作用。我们的结果表明,IO-DCN可塑性将学习的融合最多加速了两个数量级,而不会与DCN可塑性所赋予的泛化特性发生冲突。因此,该模型表明,多种分布式学习机制为解释过程学习的复杂特性提供了关键,并为小脑网络中的突触可塑性打开了新的实验问题。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号