首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Model-Based Comparison of Deep Brain Stimulation Array Functionality with Varying Number of Radial Electrodes and Machine Learning Feature Sets
【2h】

Model-Based Comparison of Deep Brain Stimulation Array Functionality with Varying Number of Radial Electrodes and Machine Learning Feature Sets

机译:基于模型的深部神经刺激阵列功能与不同数量的径向电极和机器学习特征集的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deep brain stimulation (DBS) leads with radially distributed electrodes have potential to improve clinical outcomes through more selective targeting of pathways and networks within the brain. However, increasing the number of electrodes on clinical DBS leads by replacing conventional cylindrical shell electrodes with radially distributed electrodes raises practical design and stimulation programming challenges. We used computational modeling to investigate: (1) how the number of radial electrodes impact the ability to steer, shift, and sculpt a region of neural activation (RoA), and (2) which RoA features are best used in combination with machine learning classifiers to predict programming settings to target a particular area near the lead. Stimulation configurations were modeled using 27 lead designs with one to nine radially distributed electrodes. The computational modeling framework consisted of a three-dimensional finite element tissue conductance model in combination with a multi-compartment biophysical axon model. For each lead design, two-dimensional threshold-dependent RoAs were calculated from the computational modeling results. The models showed more radial electrodes enabled finer resolution RoA steering; however, stimulation amplitude, and therefore spatial extent of the RoA, was limited by charge injection and charge storage capacity constraints due to the small electrode surface area for leads with more than four radially distributed electrodes. RoA shifting resolution was improved by the addition of radial electrodes when using uniform multi-cathode stimulation, but non-uniform multi-cathode stimulation produced equivalent or better resolution shifting without increasing the number of radial electrodes. Robust machine learning classification of 15 monopolar stimulation configurations was achieved using as few as three geometric features describing a RoA. The results of this study indicate that, for a clinical-scale DBS lead, more than four radial electrodes minimally improved in the ability to steer, shift, and sculpt axonal activation around a DBS lead and a simple feature set consisting of the RoA center of mass and orientation enabled robust machine learning classification. These results provide important design constraints for future development of high-density DBS arrays.
机译:带有径向分布电极的深部脑刺激(DBS)引线有可能通过更选择性地靶向大脑内的通路和网络来改善临床效果。然而,通过用径向分布的电极代替常规的圆柱形壳电极来增加临床DBS引线上的电极数量,对实际设计和刺激编程提出了挑战。我们使用计算模型来研究:(1)径向电极的数量如何影响操纵,移动和雕刻神经激活(RoA)区域的能力,以及(2)结合机械学习最好使用RoA功能的功能分类器,以预测编程设置以定位到引线附近的特定区域。刺激配置使用27根导线设计建模,其中有1到9个径向分布的电极。计算建模框架由三维有限元组织电导模型和多室生物物理轴突模型组成。对于每个引线设计,从计算建模结果中计算出二维阈值相关的RoAs。模型显示更多的径向电极可以实现更高分辨率的RoA转向;然而,由于具有四个以上径向分布电极的引线的电极表面积较小,因此电荷注入和电荷存储容量限制会限制刺激幅度以及RoA的空间范围。当使用均匀多阴极刺激时,通过添加径向电极可以提高RoA偏移分辨率,但是不均匀的多阴极刺激可以在不增加径向电极数量的情况下产生同等或更佳的分辨率偏移。使用多达三个描述RoA的几何特征实现了15种单极刺激配置的鲁棒机器学习分类。这项研究的结果表明,对于临床规模的DBS导线,四个以上的径向电极在围绕DBS导线和由RoA中心组成的简单特征集控制,移动和雕刻轴突激活的能力方面的改善极少。质量和方向支持强大的机器学习分类。这些结果为未来高密度DBS阵列的开发提供了重要的设计约束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号