首页> 外文会议>Image-Guided Procedures, Robotic Interventions, and Modeling >A comparison of geometry- and feature-based sparse data extraction for model-based image updating in deep brain stimulation surgery
【24h】

A comparison of geometry- and feature-based sparse data extraction for model-based image updating in deep brain stimulation surgery

机译:基于几何和特征的稀疏数据提取对深脑刺激手术中模型的图像更新的比较

获取原文

摘要

Deep brain stimulation (DBS) electrode placement is a burr-hole procedure for the treatment of patients with neuro- degenerative disease such as Parkinson's disease, essential tremor and dystonia. Accurate placement of electrodes is the key to optimal surgical outcome. However, the accuracy of pre-operative images used for surgical planning are often degraded by intraoperative brain shift. To compensate for intraoperative target deviation, we have developed a biomechanical model, driven by partially sampled displacements between pre- and postCT, to estimate a whole brain displacement field based on which updated CT (uCT) can be generated. The results of the finite element model depend on sparse data, as the model minimizes the difference between model estimates and sparse data. Existing approaches to extract sparse data from brain surface are typically geometry or feature-based. In this paper, we explore a geometry- based iterative closest point (ICP) algorithm and a feature-based image registration algorithm, and drive the model with 1) geometry-based sparse data only, 2) feature-based sparse data only, and 3) combined data from 1) and 2). We assess the model performance in terms of model-data misfit, as well as target registration errors (TREs) at the anterior commissure (AC) and posterior commissure (PC). Results show that the model driven by the geometry-based sparse data reduced the TREs of preCT from 1.65mm to 1.26 mm and 1.88 mm to 1.58 mm at AC and PC, respectively by compensating majorly along the direction of gravity and the longitudinal axis, whereas feature-based sparse data contributed to the compensation along the lateral direction at PC.
机译:深脑刺激(DBS)电极放置是用于治疗患有神经退行性疾病(如帕金森病,必需震颤和肌型患者)的毛刺孔程序。精确放置电极是最佳手术结果的关键。然而,用于外科手术计划的预操作图像的准确性通常通过术中脑移位来降低。为了补偿术中的靶向偏差,我们开发了一种生物力学模型,该模型由预先和后的部分采样位移驱动,以估计可以生成哪个更新的CT(UCT)的整个脑位移场。有限元模型的结果取决于稀疏数据,因为模型最小化了模型估计和稀疏数据之间的差异。从脑表面提取稀疏数据的现有方法通常是几何形状或基于特征。在本文中,我们探讨了基于几何的迭代最接近点(ICP)算法和基于特征的图像登记算法,并将模型与基于几何的基于几何的基于几何的稀疏数据驱动,仅为2)基于特征的稀疏数据,并且3)组合数据从1)和2)。我们在模型 - 数据的错量方面评估模型性能,以及前携带船舶(AC)和后勤(PC)的目标登记误差(TRES)。结果表明,通过基于几何形状的稀疏数据驱动的模型通过在主要沿着重力和纵向轴线的方向进行补偿,分别在AC和PC中减少了对AC和PC的1.65mm至1.26mm和1.88mm至1.58mm的。基于特征的稀疏数据有助于沿PC横向方向的补偿。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号