首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Synaptic Scaling in Combination with Many Generic Plasticity Mechanisms Stabilizes Circuit Connectivity
【2h】

Synaptic Scaling in Combination with Many Generic Plasticity Mechanisms Stabilizes Circuit Connectivity

机译:突触缩放结合许多通用的可塑性机制稳定电路连接

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Synaptic scaling is a slow process that modifies synapses, keeping the firing rate of neural circuits in specific regimes. Together with other processes, such as conventional synaptic plasticity in the form of long term depression and potentiation, synaptic scaling changes the synaptic patterns in a network, ensuring diverse, functionally relevant, stable, and input-dependent connectivity. How synaptic patterns are generated and stabilized, however, is largely unknown. Here we formally describe and analyze synaptic scaling based on results from experimental studies and demonstrate that the combination of different conventional plasticity mechanisms and synaptic scaling provides a powerful general framework for regulating network connectivity. In addition, we design several simple models that reproduce experimentally observed synaptic distributions as well as the observed synaptic modifications during sustained activity changes. These models predict that the combination of plasticity with scaling generates globally stable, input-controlled synaptic patterns, also in recurrent networks. Thus, in combination with other forms of plasticity, synaptic scaling can robustly yield neuronal circuits with high synaptic diversity, which potentially enables robust dynamic storage of complex activation patterns. This mechanism is even more pronounced when considering networks with a realistic degree of inhibition. Synaptic scaling combined with plasticity could thus be the basis for learning structured behavior even in initially random networks.
机译:突触缩放是一个缓慢的过程,可修改突触,使神经回路的放电速率保持特定状态。与其他过程(例如长期压抑和增强的形式的常规突触可塑性)一起,突触缩放会改变网络中的突触模式,从而确保多样化,功能相关,稳定且依赖于输入的连通性。然而,如何产生和稳定突触模式尚不清楚。在这里,我们根据实验研究的结果来正式描述和分析突触缩放,并证明不同常规可塑性机制和突触缩放的组合为调节网络连通性提供了强大的通用框架。此外,我们设计了几个简单的模型,可重现实验观察到的突触分布以及持续活动变化期间观察到的突触修饰。这些模型预测,可塑性和缩放比例的组合也会在循环网络中生成全局稳定的,输入控制的突触模式。因此,结合其他形式的可塑性,突触缩放可以稳健地产生具有高突触多样性的神经元回路,这有可能实现复杂激活模式的稳健动态存储。当考虑具有实际抑制程度的网络时,该机制甚至更加明显。因此,即使在最初的随机网络中,突触缩放与可塑性相结合也可以成为学习结构化行为的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号