首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Inferring Network Dynamics and Neuron Properties from Population Recordings
【2h】

Inferring Network Dynamics and Neuron Properties from Population Recordings

机译:从人口记录推断网络动力学和神经元特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding the computational capabilities of the nervous system means to “identify” its emergent multiscale dynamics. For this purpose, we propose a novel model-driven identification procedure and apply it to sparsely connected populations of excitatory integrate-and-fire neurons with spike frequency adaptation (SFA). Our method does not characterize the system from its microscopic elements in a bottom-up fashion, and does not resort to any linearization. We investigate networks as a whole, inferring their properties from the response dynamics of the instantaneous discharge rate to brief and aspecific supra-threshold stimulations. While several available methods assume generic expressions for the system as a black box, we adopt a mean-field theory for the evolution of the network transparently parameterized by identified elements (such as dynamic timescales), which are in turn non-trivially related to single-neuron properties. In particular, from the elicited transient responses, the input–output gain function of the neurons in the network is extracted and direct links to the microscopic level are made available: indeed, we show how to extract the decay time constant of the SFA, the absolute refractory period and the average synaptic efficacy. In addition and contrary to previous attempts, our method captures the system dynamics across bifurcations separating qualitatively different dynamical regimes. The robustness and the generality of the methodology is tested on controlled simulations, reporting a good agreement between theoretically expected and identified values. The assumptions behind the underlying theoretical framework make the method readily applicable to biological preparations like cultured neuron networks and in vitro brain slices.
机译:了解神经系统的计算能力意味着“识别”其新兴的多尺度动力学。为此,我们提出了一种新颖的模型驱动的识别程序,并将其应用于具有尖峰频率自适应(SFA)的稀疏连接的兴奋性整合与射击神经元群体。我们的方法没有以自下而上的方式从系统的微观元素来表征系统,并且不求助于任何线性化。我们从整体上研究网络,从瞬时放电速率的响应动力学到短暂和特定的超阈值刺激来推断其特性。尽管有几种可用方法将系统的通用表达式假设为黑匣子,但我们采用均值域理论来确定由确定的元素(例如动态时标)透明地参数化的网络的演化,而后者又与单个元素无关紧要。 -神经元特性。特别是,从引起的瞬态响应中,提取了网络中神经元的输入-输出增益函数,并提供了到微观水平的直接链接:实际上,我们展示了如何提取SFA的衰减时间常数,即绝对不应期和平均突触功效。另外,与以前的尝试相反,我们的方法捕获了跨越分叉的系统动力学,从而将定性不同的动态状态分开。该方法的鲁棒性和通用性在受控模拟下进行了测试,报告了理论上预期的值与确定的值之间的良好一致性。基本理论框架背后的假设使该方法易于适用于生物制剂,例如培养的神经元网络和体外脑切片。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号