首页> 美国卫生研究院文献>Frontiers in Genetics >Analysis of two domains with novel RNA-processing activities throws light on the complex evolution of ribosomal RNA biogenesis
【2h】

Analysis of two domains with novel RNA-processing activities throws light on the complex evolution of ribosomal RNA biogenesis

机译:具有新颖RNA加工活性的两个结构域的分析为核糖体RNA生物发生的复杂进化提供了启示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ribosomal biogenesis has been extensively investigated, especially to identify the elusive nucleases and cofactors involved in the complex rRNA processing events in eukaryotes. Large-scale screens in yeast identified two biochemically uncharacterized proteins, TSR3 and TSR4, as being key players required for rRNA maturation. Using multiple computational approaches we identify the conserved domains comprising these proteins and establish sequence and structural features providing novel insights regarding their roles. TSR3 is unified with the DTW domain into a novel superfamily of predicted enzymatic domains, with the balance of the available evidence pointing toward an RNase role with the archaeo-eukaryotic TSR3 proteins processing rRNA and the bacterial versions potentially processing tRNA. TSR4, its other eukaryotic homologs PDCD2/rp-8, PDCD2L, Zfrp8, and trus, the predominantly bacterial DUF1963 proteins, and other uncharacterized proteins are unified into a new domain superfamily, which arose from an ancient duplication event of a strand-swapped, dimer-forming all-beta unit. We identify conserved features mediating protein-protein interactions (PPIs) and propose a potential chaperone-like function. While contextual evidence supports a conserved role in ribosome biogenesis for the eukaryotic TSR4-related proteins, there is no evidence for such a role for the bacterial versions. Whereas TSR3-related proteins can be traced to the last universal common ancestor (LUCA) with a well-supported archaeo-eukaryotic branch, TSR4-related proteins of eukaryotes are derived from within the bacterial radiation of this superfamily, with archaea entirely lacking them. This provides evidence for “systems admixture,” which followed the early endosymbiotic event, playing a key role in the emergence of the uniquely eukaryotic ribosome biogenesis process.
机译:核糖体生物发生已被广泛研究,尤其是鉴定真核生物中复杂的rRNA加工事件所涉及的难以捉摸的核酸酶和辅助因子。酵母菌的大规模筛选鉴定出两种生化特性不佳的蛋白质TSR3和TSR4,它们是rRNA成熟所需的关键因素。使用多种计算方法,我们确定了包含这些蛋白质的保守结构域,并建立了序列和结构特征,提供了有关其作用的新颖见解。 TSR3与DTW结构域统一为一个新的预测酶结构域超家族,现有证据的其余部分指向具有处理rRNA的古真核TSR3蛋白和可能处理tRNA的细菌版本的RNase角色。 TSR4及其其他真核同源物PDCD2 / rp-8,PDCD2L,Zfrp8和trus(主要为细菌DUF1963蛋白)和其他未表征的蛋白被统一为一个新的域超家族,这是由古老的链交换交换事件引起的,形成二聚体的全beta单元。我们确定介导蛋白质-蛋白质相互作用(PPIs)的保守特征,并提出潜在的伴侣状功能。尽管上下文证据支持真核TSR4相关蛋白在核糖体生物发生中的保守作用,但尚无证据表明细菌版本具有这种作用。与TSR3相关的蛋白质可以追溯到具有良好支持的古细菌-真核生物分支的最后一个通用祖先(LUCA),而真核生物的TSR4相关蛋白质则来自该超家族的细菌辐射范围内,而古细菌完全缺乏它们。这为早期共生共生事件之后的“系统混合物”提供了证据,在独特的真核生物核糖体生物发生过程中起着关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号