首页> 美国卫生研究院文献>Frontiers in Neural Circuits >Glutamatergic Mechanisms for Speed Control and Network Operation in the Rodent Locomotor CPG
【2h】

Glutamatergic Mechanisms for Speed Control and Network Operation in the Rodent Locomotor CPG

机译:啮齿动物运动型CPG的速度控制和网络操作的味觉机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Locomotion is a fundamental motor act that, to a large degree, is controlled by central pattern-generating (CPG) networks in the spinal cord. Glutamate is thought to be responsible for most of the excitatory input to and the excitatory activity within the locomotor CPG. However, previous studies in mammals have produced conflicting results regarding the necessity and role of the different ionotropic glutamate receptors (GluRs) in the CPG function. Here, we use electrophysiological and pharmacological techniques in the in vitro neonatal mouse lumbar spinal cord to investigate the role of a broad range of ionotropic GluRs in the control of locomotor speed and intrinsic locomotor network function. We show that non-NMDA (non-NMDARs) and NMDA receptor (NMDAR) systems may independently mediate locomotor-like activity and that these receptors set different speeds of locomotor-like activity through mechanisms acting at various network levels. AMPA and kainate receptors are necessary for generating the highest locomotor frequencies. For coordination, NMDARs are more important than non-NMDARs for conveying the rhythmic signal from the network to the motor neurons during long-lasting and steady locomotor activity. This study reveals that a diversity of ionotropic GluRs tunes the network to perform at different locomotor speeds and provides multiple levels for potential regulation and plasticity.
机译:运动是一种基本的运动行为,在很大程度上受脊髓中的中央模式生成(CPG)网络控制。谷氨酸被认为是运动性CPG的大部分兴奋性输入和兴奋性活动的原因。然而,先前关于哺乳动物的研究在CPG功能中不同离子型谷氨酸受体(GluRs)的必要性和作用方面产生了矛盾的结果。在这里,我们在体外新生小鼠腰脊髓中使用电生理和药理学技术来研究各种离子型GluR在控制运动速度和固有运动网络功能中的作用。我们显示,非NMDA(non-NMDARs)和NMDA受体(NMDAR)系统可能独立介导类似运动的活动,并且这些受体通过作用于各种网络水平的机制设置了类似运动的活动速度。为了产生最高的运动频率,AMPA和海藻酸盐受体是必需的。为了协调,在长期稳定的运动活动中,NMDAR比非NMDAR更重要的是将有节奏的信号从网络传递到运动神经元。这项研究表明,各向同性的GluR调节网络以在不同的运动速度下运行,并为潜在的调节和可塑性提供了多个层次。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号