首页> 美国卫生研究院文献>Frontiers in Neuroinformatics >Multimodal Modeling of Neural Network Activity: Computing LFP ECoG EEG and MEG Signals With LFPy 2.0
【2h】

Multimodal Modeling of Neural Network Activity: Computing LFP ECoG EEG and MEG Signals With LFPy 2.0

机译:神经网络活动的多模式建模:使用LFPy 2.0计算LFPECoGEEG和MEG信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recordings of extracellular electrical, and later also magnetic, brain signals have been the dominant technique for measuring brain activity for decades. The interpretation of such signals is however nontrivial, as the measured signals result from both local and distant neuronal activity. In volume-conductor theory the extracellular potentials can be calculated from a distance-weighted sum of contributions from transmembrane currents of neurons. Given the same transmembrane currents, the contributions to the magnetic field recorded both inside and outside the brain can also be computed. This allows for the development of computational tools implementing forward models grounded in the biophysics underlying electrical and magnetic measurement modalities. LFPy () incorporated a well-established scheme for predicting extracellular potentials of individual neurons with arbitrary levels of biological detail. It relies on NEURON () to compute transmembrane currents of multicompartment neurons which is then used in combination with an electrostatic forward model. Its functionality is now extended to allow for modeling of networks of multicompartment neurons with concurrent calculations of extracellular potentials and current dipole moments. The current dipole moments are then, in combination with suitable volume-conductor head models, used to compute non-invasive measures of neuronal activity, like scalp potentials (electroencephalographic recordings; EEG) and magnetic fields outside the head (magnetoencephalographic recordings; MEG). One such built-in head model is the four-sphere head model incorporating the different electric conductivities of brain, cerebrospinal fluid, skull and scalp. We demonstrate the new functionality of the software by constructing a network of biophysically detailed multicompartment neuron models from the Neocortical Microcircuit Collaboration (NMC) Portal () with corresponding statistics of connections and synapses, and compute in vivo-like extracellular potentials (local field potentials, LFP; electrocorticographical signals, ECoG) and corresponding current dipole moments. From the current dipole moments we estimate corresponding EEG and MEG signals using the four-sphere head model. We also show strong scaling performance of LFPy with different numbers of message-passing interface (MPI) processes, and for different network sizes with different density of connections. The open-source software LFPy is equally suitable for execution on laptops and in parallel on high-performance computing (HPC) facilities and is publicly available on .
机译:数十年来,记录细胞外电信号以及后来的磁信号一直是测量大脑活动的主要技术。然而,这种信号的解释是不平凡的,因为所测量的信号是局部和远距离神经元活动的结果。在体积导体理论中,可以从神经元跨膜电流贡献的距离加权总和中计算细胞外电位。给定相同的跨膜电流,还可以计算对大脑内部和外部记录的磁场的贡献。这允许开发计算工具,以实现基于生物物理基础的电磁测量模式的正向模型。 LFPy()结合了一种完善的方案,可预测具有任意水平的生物学细节的单个神经元的胞外电位。它依靠NEURON()计算多室神经元的跨膜电流,然后将其与静电正向模型结合使用。现在,它的功能得到扩展,可以对多室神经元网络进行建模,并同时计算细胞外电位和电流偶极矩。然后,将当前的偶极矩与合适的体积导体头部模型相结合,用于计算神经元活动的非侵入性度量,例如头皮电位(脑电图记录; EEG)和头部外部磁场(磁脑电图记录; MEG)。一种这样的内置头部模型是四球头模型,该模型结合了大脑,脑脊髓液,头骨和头皮的不同电导率。我们通过从新皮层微电路协作(NMC)门户()构建具有生物物理详细的多室神经元模型的网络来展示该软件的新功能,该网络具有相应的连接和突触统计信息,并计算出类似体内的细胞外电势(局部场电势, LFP;皮层电信号ECoG)和相应的电流偶极矩。根据当前的偶极矩,我们使用四球头模型估算相应的EEG和MEG信号。我们还展示了LFPy具有强大的扩展性能,具有不同数量的消息传递接口(MPI)进程,以及具有不同连接密度的不同网络规模。开源软件LFPy同样适合在笔记本电脑上执行,并且可以在高性能计算(HPC)设施上并行执行,并且可以在上公开使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号